ARIA / midi_emotion /src /train.py
vincentamato's picture
Initial commit
69defc9
import time
import math
import datetime
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from models.build_model import build_model
from generate import generate
from data.preprocess_features import preprocess_features
from data.loader import Loader
from data.loader_exhaustive import LoaderExhaustive
from data.loader_generations import LoaderGenerations
from data.collate import filter_collate
from utils import CsvWriter, create_exp_dir, accuracy
from config import args
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Set the random seed manually for reproducibility.
if args.seed > 0:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
class Runner:
def __init__(self):
self.logging = create_exp_dir(args.work_dir, debug=args.debug)
use_cuda = torch.cuda.is_available() and not args.no_cuda
self.device = torch.device('cuda' if use_cuda else 'cpu')
if self.device == torch.device("cuda"):
self.logging("Using GPU")
else:
self.logging("Using CPU")
self.train_step = 0
self.n_sequences_total = 0
self.init_hours = 0
self.epoch = 0
self.init_time = time.time()
# Load data
n_bins = args.n_emotion_bins if args.conditioning == "discrete_token" and \
not args.regression else None
conditional = args.conditioning != "none" or args.regression
# Preprocessing
train_feats, test_feats = preprocess_features(
"../data_files/features/pianoroll/full_dataset_features_summarized.csv",
n_bins=n_bins, conditional=conditional,
use_labeled_only=not args.full_dataset)
if args.exhaustive_eval:
# Evaluate using ENTIRE test set
train_dataset = []
test_dataset = LoaderExhaustive(args.data_folder, test_feats, args.tgt_len, args.conditioning,
max_samples=args.n_samples, regression=args.regression,
always_use_discrete_condition=args.always_use_discrete_condition)
else:
train_dataset = Loader(args.data_folder, train_feats, args.tgt_len, args.conditioning,
regression=args.regression, always_use_discrete_condition=args.always_use_discrete_condition)
test_dataset = Loader(args.data_folder, test_feats, args.tgt_len, args.conditioning,
regression=args.regression, always_use_discrete_condition=args.always_use_discrete_condition)
if args.regression_dir is not None:
# Perform emotion regression on generated samples
train_dataset = []
test_dataset = LoaderGenerations(args.regression_dir, args.tgt_len)
self.null_condition = torch.FloatTensor([np.nan, np.nan]).to(self.device)
self.maps = test_dataset.get_maps()
self.pad_idx = test_dataset.get_pad_idx()
self.vocab_size = test_dataset.get_vocab_len()
args.vocab_size = self.vocab_size
self.logging(f"Number of tokens: {self.vocab_size}")
if args.exhaustive_eval or args.regression_dir is not None:
self.train_loader = []
else:
self.train_loader = torch.utils.data.DataLoader(train_dataset, args.batch_size, shuffle=not args.debug,
num_workers=args.num_workers, collate_fn=filter_collate,
pin_memory=not args.no_cuda, drop_last=True)
self.test_loader = torch.utils.data.DataLoader(test_dataset, args.batch_size, shuffle=False,
num_workers=args.num_workers, collate_fn=filter_collate,
pin_memory=not args.no_cuda and args.regression_dir is None,
drop_last=True)
print(f"Data loader lengths\nTrain: {len(train_dataset)}")
if not args.overfit:
print(f"Test:{len(test_dataset)}")
self.gen_dir = os.path.join(args.work_dir, "generations", "training")
# Automatic mixed precision
self.amp = not args.no_amp and self.device == torch.device('cuda')
if self.amp:
self.logging("Using automatic mixed precision")
else:
self.logging("Using float32")
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
self.init_model() # Build the model
if not args.debug:
# Save mappings
os.makedirs(self.gen_dir, exist_ok=True)
torch.save(self.maps, os.path.join(args.work_dir, "mappings.pt"))
self.csv_writer = CsvWriter(os.path.join(args.work_dir, "performance.csv"),
["epoch", "step", "hour", "lr", "trn_loss", "val_loss", "val_l1_v", "val_l1_a"],
in_path=self.csv_in, debug=args.debug)
args.n_all_param = sum([p.nelement() for p in self.model.parameters()])
self.model = self.model.to(self.device)
self.ce_loss = nn.CrossEntropyLoss(ignore_index=self.pad_idx).to(self.device)
self.mse_loss = nn.MSELoss()
self.l1_loss = nn.L1Loss()
#### scheduler
if args.scheduler == '--':
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer,
args.max_step, eta_min=args.eta_min)
elif args.scheduler == 'dev_perf':
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
elif args.scheduler == 'constant':
pass
elif args.scheduler == 'cyclic':
self.scheduler = optim.lr_scheduler.CyclicLR(self.optimizer,
args.lr_min, args.lr_max, verbose=False, cycle_momentum=False)
# Print log
if not args.debug:
self.logging('=' * 120)
for k, v in args.__dict__.items():
self.logging(' - {} : {}'.format(k, v))
self.logging('=' * 120)
self.logging('#params = {}'.format(args.n_all_param))
now = datetime.datetime.now()
now = now.strftime("%d-%m-%Y %H:%M")
self.logging(f"Run started at {now}")
self.once = True
def init_model(self):
# Initialize model
if args.restart_dir:
# Load existing model
config = torch.load(os.path.join(args.restart_dir, "model_config.pt"))
self.model, config = build_model(None, load_config_dict=config)
self.model = self.model.to(self.device)
model_fp = os.path.join(args.restart_dir, 'model.pt')
optimizer_fp = os.path.join(args.restart_dir, 'optimizer.pt')
stats_fp = os.path.join(args.restart_dir, 'stats.pt')
scaler_fp = os.path.join(args.restart_dir, 'scaler.pt')
self.model.load_state_dict(
torch.load(model_fp, map_location=lambda storage, loc: storage))
self.logging(f"Model loaded from {model_fp}")
self.csv_in = os.path.join(args.restart_dir, 'performance.csv')
else:
# Build model from scratch
self.csv_in = None
self.model, config = build_model(vars(args))
self.model = self.model.to(self.device)
# save model configuration for later load
if not args.debug:
torch.save(config, os.path.join(args.work_dir, "model_config.pt"))
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr)
# Load self.optimizer if necessary
if args.restart_dir:
if os.path.exists(optimizer_fp):
try:
self.optimizer.load_state_dict(
torch.load(optimizer_fp, map_location=lambda storage, loc: storage))
except:
pass
else:
print('Optimizer was not saved. Start from scratch.')
try:
stats = torch.load(stats_fp)
self.train_step = stats["step"]
self.init_hours = stats["hour"]
self.epoch = stats["epoch"]
self.n_sequences_total = stats["sample"]
except:
self.train_step = 0
self.init_hours = 0
self.epoch = 0
self.n_sequences_total = 0
if os.path.exists(scaler_fp) and not args.reset_scaler:
try:
self.scaler.load_state_dict(torch.load(scaler_fp))
except:
pass
if args.overwrite_lr:
# New learning rate
for p in self.optimizer.param_groups:
p['lr'] = args.lr
###############################################################################
# EVALUATION
###############################################################################
def evaluate(self):
# Turn on evaluation mode which disables dropout.
self.model.eval()
# Evaluation
topk = (1, 5) # find accuracy for top-1 and top-5
n_elements_total, n_sequences_total, total_loss = 0, 0, 0.
total_accs = {"l1_v": 0., "l1_a": 0., "l1_mean": 0., "l1_mean_normal":0
} if args.regression else {k: 0. for k in topk}
with torch.no_grad():
n_batches = len(self.test_loader)
loader = enumerate(self.test_loader)
if args.exhaustive_eval or args.regression:
loader = tqdm(loader, total=n_batches)
for i, (input_, condition, target) in loader:
if args.max_eval_step > 0 and i >= args.max_eval_step:
break
if input_ != []:
input_ = input_.to(self.device)
condition = condition.to(self.device)
if not args.regression:
target = target.to(self.device)
loss, pred = self.forward_pass(input_, condition, target)
if args.regression:
pred = torch.clamp(pred, min=-1.0, max=1.0)
loss = self.l1_loss(pred, condition)
l1_v = self.l1_loss(pred[:, 0], condition[:, 0]).item()
l1_a = self.l1_loss(pred[:, 1], condition[:, 1]).item()
accuracies = {"l1_v": l1_v, "l1_a": l1_a,
"l1_mean": (l1_v + l1_a) / 2,
"l1_mean_normal": (l1_v + l1_a) / 2 / 2}
n_elements = pred[:, 0].numel()
else:
accuracies = accuracy(pred, target, topk=topk, ignore_index=self.pad_idx)
n_elements = input_.numel()
n_sequences = input_.size(0)
total_loss += n_elements * loss.item()
for key, value in accuracies.items():
total_accs[key] += n_elements * value
n_elements_total += n_elements
n_sequences_total += n_sequences
if n_elements_total == 0:
avg_loss = float('nan')
avg_accs = float('nan')
else:
avg_loss = total_loss / n_elements_total
avg_accs = {k: v/n_elements_total for k, v in total_accs.items()}
if args.exhaustive_eval:
print(f"Total number of sequences: {n_sequences_total}")
return avg_loss, avg_accs
def forward_pass(self, input_, condition, target):
input_ = input_.to(self.device)
condition = condition.to(self.device)
with torch.cuda.amp.autocast(enabled=self.amp):
if args.regression:
output = self.model(input_)
loss = self.l1_loss(output, condition)
else:
target = target.to(self.device)
output = self.model(input_, condition)
output_flat = output.reshape(-1, output.size(-1))
target = target.reshape(-1)
loss = self.ce_loss(output_flat, target)
return loss, output
def train(self):
# Turn on training mode which enables dropout.
self.model.train()
train_loss = 0
n_elements_total = 0
train_interval_start = time.time()
while True:
for input_, condition, target in self.train_loader:
self.model.train()
if input_ != []:
loss, _ = self.forward_pass(input_, condition, target)
loss_val = loss.item()
loss /= args.accumulate_step
n_elements = input_.numel()
if not math.isnan(loss_val):
train_loss += n_elements * loss_val
n_elements_total += n_elements
self.n_sequences_total += input_.size(0)
self.scaler.scale(loss).backward()
if self.train_step % args.accumulate_step == 0:
self.scaler.unscale_(self.optimizer)
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), args.clip)
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if args.scheduler != "constant":
# linear warmup stage
if self.train_step <= args.warmup_step:
curr_lr = args.lr * self.train_step / args.warmup_step
self.optimizer.param_groups[0]['lr'] = curr_lr
else:
self.scheduler.step()
if (self.train_step % args.gen_step == 0) and self.train_step > 0 and not args.regression:
# Generate and save samples
with torch.no_grad():
self.model.eval()
if args.max_gen_input_len > 0:
max_input_len = args.max_gen_input_len
else:
max_input_len = args.tgt_len
primers = [["<START>"]]
# Use fixed set of conditions
if args.conditioning == "none":
discrete_conditions = None
continuous_conditions = None
primers = [["<START>"] for _ in range(4)]
elif args.conditioning == "discrete_token":
discrete_conditions = [
["<V-2>", "<A-2>"],
["<V-2>", "<A2>"],
["<V2>", "<A-2>"],
["<V2>", "<A2>"],
]
continuous_conditions = None
elif args.conditioning in ["continuous_token", "continuous_concat"]:
discrete_conditions = None
continuous_conditions = [
[-0.8, -0.8],
[-0.8, 0.8],
[0.8, -0.8],
[0.8, 0.8]
]
generate(self.model, self.maps, self.device, self.gen_dir, args.conditioning,
debug=args.debug, verbose=False, amp=self.amp, discrete_conditions=discrete_conditions,
continuous_conditions=continuous_conditions, min_n_instruments=1,
gen_len=args.gen_len, max_input_len=max_input_len,
step=str(self.train_step), primers=primers,
temperatures=[args.temp_note, args.temp_rest])
if (self.train_step % args.log_step == 0):
# Print log
if n_elements_total > 0:
cur_loss = train_loss / n_elements_total
elapsed_total = time.time() - self.init_time
elapsed_interval = time.time() - train_interval_start
hours_elapsed = elapsed_total / 3600.0
hours_total = self.init_hours + hours_elapsed
lr = self.optimizer.param_groups[0]['lr']
log_str = '| Epoch {:3d} step {:>8d} | {:>6d} sequences | {:>3.1f} h | lr {:.2e} ' \
'| ms/batch {:4.0f} | loss {:7.4f}'.format(
self.epoch, self.train_step, self.n_sequences_total, hours_total, lr,
elapsed_interval * 1000 / args.log_step, cur_loss)
self.logging(log_str)
self.csv_writer.update({"epoch": self.epoch, "step": self.train_step, "hour": hours_total,
"lr": lr, "trn_loss": cur_loss, "val_loss": np.nan,
"val_l1_v": np.nan, "val_l1_a": np.nan})
train_loss = 0
n_elements_total = 0
self.n_good_output, self.n_nan_output = 0, 0
train_interval_start = time.time()
if not args.debug:
# Save model
model_fp = os.path.join(args.work_dir, 'model.pt')
torch.save(self.model.state_dict(), model_fp)
optimizer_fp = os.path.join(args.work_dir, 'optimizer.pt')
torch.save(self.optimizer.state_dict(), optimizer_fp)
scaler_fp = os.path.join(args.work_dir, 'scaler.pt')
torch.save(self.scaler.state_dict(), scaler_fp)
torch.save({"step": self.train_step, "hour": hours_total, "epoch": self.epoch,
"sample": self.n_sequences_total},
os.path.join(args.work_dir, 'stats.pt'))
if (self.train_step % args.eval_step == 0):
# Evaluate model
val_loss, val_acc = self.evaluate()
elapsed_total = time.time() - self.init_time
hours_elapsed = elapsed_total / 3600.0
hours_total = self.init_hours + hours_elapsed
lr = self.optimizer.param_groups[0]['lr']
self.logging('-' * 120)
log_str = '| Eval {:3d} step {:>8d} | now: {} | {:>3.1f} h' \
'| valid loss {:7.4f} | ppl {:5.3f}'.format(
self.train_step // args.eval_step, self.train_step,
time.strftime("%d-%m - %H:%M"), hours_total,
val_loss, math.exp(val_loss))
if args.regression:
log_str += " | l1_v: {:5.3f} | l1_a: {:5.3f}".format(
val_acc["l1_v"], val_acc["l1_a"])
self.csv_writer.update({"epoch": self.epoch, "step": self.train_step, "hour": hours_total,
"lr": lr, "trn_loss": np.nan, "val_loss": val_loss})
self.logging(log_str)
self.logging('-' * 120)
# dev-performance based learning rate annealing
if args.scheduler == 'dev_perf':
self.scheduler.step(val_loss)
if self.train_step >= args.max_step:
break
self.train_step += 1
self.epoch += 1
if self.train_step >= args.max_step:
break
def run(self):
# Loop over epochs.
# At any point you can hit Ctrl + C to break out of training early.
try:
if args.exhaustive_eval or args.regression_dir is not None:
self.logging("Exhaustive evaluation")
if args.regression_dir is not None:
self.logging(f"For regression on folder {args.regression_dir}")
loss, accuracies = self.evaluate()
perplexity = math.exp(loss)
elapsed_total = time.time() - self.init_time
hours_elapsed = elapsed_total / 3600.0
msg = f"Loss: {loss:7.4f}, ppl: {perplexity:5.2f}"
for k, v in accuracies.items():
if args.regression:
msg += f", {k}: {v:7.4f}"
else:
msg += f", top{k:1.0f}: {v:7.4f}"
msg += f", hours: {hours_elapsed:3.1f}"
self.logging(msg)
else:
while True:
self.train()
if self.train_step >= args.max_step:
self.logging('-' * 120)
self.logging('End of training')
break
except KeyboardInterrupt:
self.logging('-' * 120)
self.logging('Exiting from training early')
if __name__ == "__main__":
runner = Runner()
runner.run()