| # MelGAN STFT: MelGAN With Multi Resolution STFT Loss | |
| Based on the script [`train_melgan_stft.py`](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan_stft/train_melgan_stft.py). | |
| ## Training MelGAN STFT from scratch with LJSpeech dataset. | |
| This example code show you how to train MelGAN from scratch with Tensorflow 2 based on custom training loop and tf.function. The data used for this example is LJSpeech, you can download the dataset at [link](https://keithito.com/LJ-Speech-Dataset/). | |
| ### Step 1: Create Tensorflow based Dataloader (tf.dataset) | |
| Please see detail at [examples/melgan/](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan#step-1-create-tensorflow-based-dataloader-tfdataset) | |
| ### Step 2: Training from scratch | |
| After you re-define your dataloader, pls modify an input arguments, train_dataset and valid_dataset from [`train_melgan_stft.py`](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan_stft/train_melgan_stft.py). Here is an example command line to training melgan-stft from scratch: | |
| First, you need training generator with only stft loss: | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0 python examples/melgan_stft/train_melgan_stft.py \ | |
| --train-dir ./dump/train/ \ | |
| --dev-dir ./dump/valid/ \ | |
| --outdir ./examples/melgan_stft/exp/train.melgan_stft.v1/ \ | |
| --config ./examples/melgan_stft/conf/melgan_stft.v1.yaml \ | |
| --use-norm 1 | |
| --generator_mixed_precision 1 \ | |
| --resume "" | |
| ``` | |
| Then resume and start training generator + discriminator: | |
| ```bash | |
| CUDA_VISIBLE_DEVICES=0 python examples/melgan_stft/train_melgan_stft.py \ | |
| --train-dir ./dump/train/ \ | |
| --dev-dir ./dump/valid/ \ | |
| --outdir ./examples/melgan_stft/exp/train.melgan_stft.v1/ \ | |
| --config ./examples/melgan_stft/conf/melgan_stft.v1.yaml \ | |
| --use-norm 1 | |
| --resume ./examples/melgan_stft/exp/train.melgan_stft.v1/checkpoints/ckpt-100000 | |
| ``` | |
| IF you want to use MultiGPU to training you can replace `CUDA_VISIBLE_DEVICES=0` by `CUDA_VISIBLE_DEVICES=0,1,2,3` for example. You also need to tune the `batch_size` for each GPU (in config file) by yourself to maximize the performance. Note that MultiGPU now support for Training but not yet support for Decode. | |
| In case you want to resume the training progress, please following below example command line: | |
| ```bash | |
| --resume ./examples/melgan_stft/exp/train.melgan_stft.v1/checkpoints/ckpt-100000 | |
| ``` | |
| If you want to finetune a model, use `--pretrained` like this with the filename of the generator | |
| ```bash | |
| --pretrained ptgenerator.h5 | |
| ``` | |
| **IMPORTANT NOTES**: | |
| - When training generator only, we enable mixed precision to speed-up training progress. | |
| - We don't apply mixed precision when training both generator and discriminator. (Discriminator include group-convolution, which cause discriminator slower when enable mixed precision). | |
| - 100k here is a *discriminator_train_start_steps* parameters from [melgan_stft.v1.yaml](https://github.com/tensorspeech/TensorflowTTS/tree/master/examples/melgan_stft/conf/melgan_stft.v1.yaml) | |
| ## Finetune MelGAN STFT with ljspeech pretrained on other languages | |
| Just load pretrained model and training from scratch with other languages. **DO NOT FORGET** re-preprocessing on your dataset if needed. A hop_size should be 256 if you want to use our pretrained. | |
| ## Learning Curves | |
| Here is a learning curves of melgan based on this config [`melgan_stft.v1.yaml`](https://github.com/tensorspeech/TensorflowTTS/tree/master/examples/melgan_stft/conf/melgan_stft.v1.yaml) | |
| <img src="fig/melgan.stft.v1.eval.png" height="300" width="850"> | |
| <img src="fig/melgan.stft.v1.train.png" height="300" width="850"> | |
| ## Some important notes | |
| * We apply learning rate = 1e-3 when training generator only then apply lr = 1e-4 for both G and D. | |
| * See [examples/melgan](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan#some-important-notes) for more notes. | |
| ## Pretrained Models and Audio samples | |
| | Model | Conf | Lang | Fs [Hz] | Mel range [Hz] | FFT / Hop / Win [pt] | # iters | | |
| | :------ | :---: | :---: | :----: | :--------: | :---------------: | :-----: | | |
| | [melgan_stft.v1](https://drive.google.com/drive/folders/1xUkDjbciupEkM3N4obiJAYySTo6J9z6b?usp=sharing) | [link](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan_stft/conf/melgan_stft.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1900k | | |
| ## Reference | |
| 1. https://github.com/descriptinc/melgan-neurips | |
| 2. https://github.com/kan-bayashi/ParallelWaveGAN | |
| 3. https://github.com/tensorflow/addons | |
| 4. [MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis](https://arxiv.org/abs/1910.06711) | |
| 5. [Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram](https://arxiv.org/abs/1910.11480) |