File size: 2,032 Bytes
f609dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import cv2
import numpy as np
from tensorflow.keras.models import load_model
import mediapipe as mp

model = load_model('gesture_model.h5')
actions = ['I', 'help', 'need', 'sleep', 'angry', 'urgent']
threshold = 0.8

mp_holistic = mp.solutions.holistic

def extract_keypoints(results):
    pose = np.array([[res.x, res.y, res.z] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33 * 3)
    lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21 * 3)
    rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21 * 3)
    return np.concatenate([pose, lh, rh])

def predict_gesture(video_path):
    cap = cv2.VideoCapture(video_path)
    sequence = []
    sentence = []

    with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            results = holistic.process(image)
            keypoints = extract_keypoints(results)
            sequence.append(keypoints)
            sequence = sequence[-30:]

            if len(sequence) == 30:
                res = model.predict(np.expand_dims(sequence, axis=0))[0]
                if res[np.argmax(res)] > threshold:
                    action = actions[np.argmax(res)]
                    if not sentence or sentence[-1] != action:
                        sentence.append(action)

        cap.release()
        return ' '.join(sentence)

iface = gr.Interface(
    fn=predict_gesture,
    inputs=gr.Video(label="Upload your gesture video"),
    outputs="text",
    title="Gesture Recognition AI",
    description="Upload a short gesture video (e.g., showing 'I need help') and get the recognized sentence."
)

iface.launch()