DeepOperateAI-Video / goldfish_lv.py
weiyi01191's picture
Upload 207 files
dc80a97
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import time
import json
import argparse
import torch
import cv2
import moviepy.editor as mp
import webvtt
import re
from typing import Optional, List
from tqdm import tqdm
from PIL import Image
from torchvision import transforms
from pytubefix import YouTube
from minigpt4.common.eval_utils import init_model
from minigpt4.conversation.conversation import CONV_VISION
from index import MemoryIndex
import pysrt
import chardet
from openai import OpenAI
if os.getenv("OPENAI_API_KEY") is not None:
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
else:
client = OpenAI(api_key="")
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
from transformers import BitsAndBytesConfig
# from split_long_video_in_parallel import split_video
import transformers
import whisper
from datetime import timedelta
# Function to format timestamps for VTT
def format_timestamp(seconds):
td = timedelta(seconds=seconds)
total_seconds = int(td.total_seconds())
milliseconds = int(td.microseconds / 1000)
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
def clean_text(subtitles_text):
# Remove unwanted characters except for letters, digits, spaces, periods, commas, exclamation marks, and single quotes
subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
# Replace multiple spaces with a single space
subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
return subtitles_text.strip()
def time_to_seconds(subrip_time):
return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000
def split_subtitles(subtitle_path, n):
# read the subtitle file and detect the encoding
with open(subtitle_path, 'rb') as f:
result = chardet.detect(f.read())
subs = pysrt.open(subtitle_path, encoding=result['encoding'])
total_subs = len(subs)
if n <= 0 or n > total_subs:
print("Invalid value for n. It should be a positive integer less than or equal to the total number of subtitles.")
return None
subs_per_paragraph = total_subs // n
remainder = total_subs % n
paragraphs = []
current_index = 0
for i in range(n):
num_subs_in_paragraph = subs_per_paragraph + (1 if i < remainder else 0)
paragraph_subs = subs[current_index:current_index + num_subs_in_paragraph]
current_index += num_subs_in_paragraph
# Join subtitles using pysrt's built-in method for efficient formatting
paragraph = pysrt.SubRipFile(items=paragraph_subs).text
paragraphs.append(paragraph)
return paragraphs
class GoldFish_LV:
"""
'GoldFish_LV' class is to handle long video processing and subtitle management with MiniGPT4_video base model.
"""
def __init__(self, args: argparse.Namespace) -> None:
self.args = args
self.model, self.vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args)
self.whisper_gpu_id=whisper_gpu_id
self.minigpt4_gpu_id=minigpt4_gpu_id
self.answer_module_gpu_id=answer_module_gpu_id
# self.original_llama_model,self.original_llama_tokenizer=self.load_original_llama_model()
# self.original_llama_model=self.load_original_llama_model_vllm()
self.llama_3_1_model=self.load_llama3_1_model()
self.whisper_model=whisper.load_model("large",device=f"cuda:{self.whisper_gpu_id}")
# self.summary_instruction="Generate a description of this video .Pay close attention to the objects, actions, emotions portrayed in the video,providing a vivid description of key moments.Specify any visual cues or elements that stand out."
self.summary_instruction="I'm a blind person, please provide me with a detailed summary of the video content and try to be as descriptive as possible."
def load_original_llama_model(self):
model_name="meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = "[PAD]"
tokenizer.padding_side = "left"
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
)
llama_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map={'': f"cuda:{self.answer_module_gpu_id}"},
quantization_config=bnb_config,
)
return llama_model,tokenizer
def load_llama3_1_model(self):
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
)
self.llama3_tokenizer = AutoTokenizer.from_pretrained(model_id)
llama3_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map={'': f"cuda:{self.answer_module_gpu_id}"},
quantization_config=bnb_config,
)
pipeline = transformers.pipeline(
"text-generation",
model=llama3_model,
tokenizer=self.llama3_tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map=f"cuda:{self.answer_module_gpu_id}",
)
return pipeline
def _youtube_download(self, url: str) -> str:
try:
video_id = url.split('v=')[-1].split('&')[0]
video_id = video_id.strip()
print(f"Downloading video with ID: {video_id}")
youtube = YouTube(f"https://www.youtube.com/watch?v={video_id}")
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if not video_stream:
raise ValueError("No suitable video stream found.")
output_path = f"workspace/tmp/{video_id}.mp4"
self.video_id=video_id
video_stream.download(output_path="workspace/tmp", filename=f"{video_id}.mp4")
return output_path
except Exception as e:
print(f"Error downloading video: {e}")
return url
@staticmethod
def is_youtube_url(url: str) -> bool:
youtube_regex = (
r'(https?://)?(www\.)?'
'(youtube|youtu|youtube-nocookie)\.(com|be)/'
'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})'
)
return bool(re.match(youtube_regex, url))
def process_video_url(self, video_path: str) -> str:
if self.is_youtube_url(video_path):
return self._youtube_download(video_path)
else:
return video_path
def create_video_grid(self, images: list, rows: int, cols: int, save_path: str) -> Image.Image:
image_width, image_height = images[0].size
grid_width = cols * image_width
grid_height = rows * image_height
new_image = Image.new("RGB", (grid_width, grid_height))
for i in range(rows):
for j in range(cols):
index = i * cols + j
if index < len(images):
image = images[index]
x_offset = j * image_width
y_offset = i * image_height
new_image.paste(image, (x_offset, y_offset))
new_image.save(save_path)
return new_image
def get_subtitles(self, video_path) :
video_name=video_path.split('/')[-2]
video_id=video_path.split('/')[-1].split('.')[0]
audio_dir = f"workspace/audio/{video_name}"
subtitle_dir = f"workspace/subtitles/{video_name}"
os.makedirs(audio_dir, exist_ok=True)
os.makedirs(subtitle_dir, exist_ok=True)
# if the subtitles are already generated, return the path of the subtitles
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
if os.path.exists(subtitle_path):
return f"{subtitle_dir}/{video_id}"+'.vtt'
audio_path = f"{audio_dir}/{video_id}"+'.mp3'
try:
self.extract_audio(video_path, audio_path)
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
result = self.whisper_model.transcribe(audio_path,language="en")
# Create VTT file
with open(subtitle_path, "w", encoding="utf-8") as vtt_file:
vtt_file.write("WEBVTT\n\n")
for segment in result['segments']:
start = format_timestamp(segment['start'])
end = format_timestamp(segment['end'])
text = segment['text']
vtt_file.write(f"{start} --> {end}\n{text}\n\n")
return subtitle_path
except Exception as e:
print(f"Error during subtitle generation for {video_path}: {e}")
return None
def prepare_input(self,
video_path: str,
subtitle_path: Optional[str],
instruction: str,previous_caption=""):
# If a subtitle path is provided, read the VTT (Web Video Text Tracks) file, else set to an empty list
conversation=""
if subtitle_path:
vtt_file = webvtt.read(subtitle_path)
print("Subtitle loaded successfully")
try:
for subtitle in vtt_file:
sub = subtitle.text.replace('\n',' ')
conversation+=sub
except:
pass
if self.model.model_type == "Mistral":
max_images_length=90
max_sub_len = 800
else:
max_images_length = 45
max_sub_len = 400
# Load the video file using moviepy and calculate the total number of frames
clip = mp.VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
clip.close()
# Calculate how often to sample a frame based on the total number of frames and the maximum images length
cap = cv2.VideoCapture(video_path)
images = []
frame_count = 0
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
# Initialize variables to hold image placeholders, current subtitle text, and subtitle history
if previous_caption != "":
img_placeholder = previous_caption+" "
else:
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
raw_frames=[]
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
# Loop through each frame in the video
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# TODO: we need to add subtitles in external memory either
if subtitle_path is not None:
for i, subtitle in enumerate(vtt_file):
sub = subtitle.text.replace('\n',' ')
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
if not history_subtitles.get(sub, False):
subtitle_text_in_interval += sub + " "
history_subtitles[sub] = True
break
# Process and store the frame at specified intervals
if frame_count % sampling_interval == 0:
raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
frame_count += 1
# Break the loop if the maximum number of images is reached
if len(images) >= max_images_length:
break
cap.release()
cv2.destroyAllWindows()
# Return None if no images are extracted
if len(images) == 0:
return None, None
while len(images) < max_images_length:
images.append(images[-1])
img_placeholder += '<Img><ImageHere>'
images = torch.stack(images)
print("Input instruction length",len(instruction.split(' ')))
instruction = img_placeholder + '\n' + instruction
print("number of words",number_of_words)
print("number of images",len(images))
return images, instruction,conversation
def extract_audio(self, video_path: str, audio_path: str) -> None:
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def short_video_inference (self,video_path,instruction,gen_subtitles=True):
if gen_subtitles:
subtitle_path=self.get_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction,video_conversation=self.prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = self.model.generate(prepared_images, prompt, max_new_tokens=512, do_sample=False, lengths=[length],num_beams=1)
return answers[0]
def split_long_video_into_clips(self,video_path):
# Split the video into 90 seconds clips and make a queue of the videos and run the inference on each video
self.video_name=video_path.split('/')[-1].split('.')[0]
tmp_save_path=f"workspace/tmp/{self.video_name}"
os.makedirs(tmp_save_path, exist_ok=True)
print("tmp_save_path",tmp_save_path)
if len(os.listdir(tmp_save_path)) == 0:
print("Splitting Long video")
os.system(f"python split_long_video_in_parallel.py --video_path {video_path} --output_folder {tmp_save_path}")
# split_video(video_path, tmp_save_path, clip_duration=90)
videos_list = sorted(os.listdir(tmp_save_path))
return videos_list,tmp_save_path
def long_inference_video(self, videos_list,tmp_save_path,subtitle_paths) -> Optional[str]:
save_long_videos_path = "new_workspace/clips_summary/demo"
os.makedirs(save_long_videos_path, exist_ok=True)
file_path = f'{save_long_videos_path}/{self.video_name}.json'
if os.path.exists(file_path):
print("Clips inference already done")
with open(file_path, 'r') as file:
video_information = json.load(file)
else:
video_number = 0
batch_size = self.args.batch_size
batch_video_paths, batch_instructions ,batch_subtitles= [], [],[]
video_information = {}
video_captions = []
for i, video in tqdm(enumerate(videos_list), desc="Inference video clips", total=len(videos_list)):
clip_path = os.path.join(tmp_save_path, video)
batch_video_paths.append(clip_path)
# previous_caption = "You are analysing a one long video of mutiple clips and this is the summary from all previous clips :"+video_captions[-1]+"\n\n" if video_captions else ""
previous_caption=""
batch_instructions.append(self.summary_instruction)
batch_subtitles.append(subtitle_paths[i])
# Process each batch
if len(batch_video_paths) % batch_size == 0 and i != 0:
batch_preds,videos_conversation=self.run_batch(batch_video_paths,batch_instructions, batch_subtitles,previous_caption)
for pred,subtitle in zip(batch_preds,videos_conversation):
video_number += 1
save_name=f"{video_number}".zfill(5)
if pred != "":
video_information[f'caption__{save_name}'] = pred
if subtitle != "":
video_information[f'subtitle__{save_name}'] = subtitle
video_captions.append(pred)
batch_video_paths, batch_instructions,batch_subtitles = [], [],[]
# Process any remaining videos in the last batch
if batch_video_paths:
batch_preds,videos_conversation=self.run_batch(batch_video_paths,batch_instructions, batch_subtitles,previous_caption)
for pred,subtitle in zip(batch_preds,videos_conversation):
video_number += 1
save_name=f"{video_number}".zfill(5)
if pred != "":
video_information[f'caption__{save_name}'] = pred
if subtitle != "":
video_information[f'subtitle__{save_name}'] = subtitle
video_captions.append(pred)
with open(file_path, 'w') as file:
json.dump(video_information, file, indent=4)
print("Clips inference done")
return video_information
# def inference_RAG(self, instructions, context_list):
# context_promots=[]
# questions_prompts=[]
# try:
# for instruction,context in zip(instructions,context_list):
# context=clean_text(context)
# context_prompt=f"<s>[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
# question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]"
# context_promots.append(context_prompt)
# questions_prompts.append(question_prompt)
# context_inputs = self.original_llama_tokenizer(context_promots, return_tensors="pt", padding=True, truncation=True,max_length=3500)
# # print(context_inputs.keys())
# print("context_inputs shape",context_inputs['input_ids'].shape)
# question_inputs = self.original_llama_tokenizer(questions_prompts, return_tensors="pt", padding=True, truncation=True,max_length=300)
# print("question_inputs shape",question_inputs['input_ids'].shape)
# # concate the context and the question together
# inputs_ids=torch.cat((context_inputs['input_ids'],question_inputs['input_ids']),dim=1).to('cuda')
# print("inputs shape",inputs_ids.shape)
# except Exception as e:
# print("error while tokenization",e)
# return self.inference_RAG_batch_size_1(instructions, context_list)
# with torch.no_grad():
# summary_ids = self.original_llama_model.generate(inputs_ids,max_new_tokens=512)
# answers=[]
# for i in range(len(summary_ids)):
# output_text=self.original_llama_tokenizer.decode(summary_ids[i], skip_special_tokens=True)
# output_text = output_text.split('</s>')[0] # remove the stop sign </s>
# output_text = output_text.replace("<s>", "")
# output_text = output_text.split(r'[/INST]')[-1].strip()
# answers.append(output_text)
# return answers
def inference_RAG(self, instructions, context_list):
messages=[]
for instruction,context in zip(instructions,context_list):
context=clean_text(context)
context_prompt=f"Your task is to answer a specific question based on one long video. While you cannot view the video yourself, I will supply you with the most relevant text information from the most pertinent clips. \n{context}\n"
question_prompt=f"\nPlease provide a detailed and accurate answer to the following question:{instruction} \n Your answer should be:"
# limit the context words to 10000 word duo to hardware limitation
context_words=context_prompt.split(' ')
truncated_context=' '.join(context_words[:10000])
print("Number of words",len((truncated_context+question_prompt).split(' ')))
messages.append([{"role": "user", "content": truncated_context+question_prompt}])
outputs=self.llama_3_1_model(messages, max_new_tokens=512)
answers=[]
for out in outputs:
answers.append(out[0]["generated_text"][-1]['content'])
return answers
# def inference_RAG(self, instructions, context_list):
# prompts=[]
# for instruction,context in zip(instructions,context_list):
# context=clean_text(context)
# context_prompt=f"Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
# question_prompt=f"\nAnswer this question :{instruction} \n your answer is:"
# prompts.append(context_prompt+question_prompt)
# with open('prompts.txt','w') as f:
# for prompt in prompts:
# f.write(prompt+'\n')
# outputs=self.original_llama_model.generate(prompts)
# answers=[]
# for out in outputs:
# answers.append(out.outputs[0].text)
# return answers
def inference_RAG_batch_size_1(self, instructions, context_list):
answers=[]
for instruction,context in zip(instructions,context_list):
context=clean_text(context)
context_prompt=f"<s>[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]"
context_inputs=self.original_llama_tokenizer([context_prompt], return_tensors="pt", padding=True, truncation=True,max_length=3500)['input_ids']
question_inputs=self.original_llama_tokenizer([question_prompt], return_tensors="pt", padding=True, truncation=True,max_length=300)['input_ids']
inputs_ids=torch.cat((context_inputs,question_inputs),dim=1).to('cuda')
with torch.no_grad():
summary_ids = self.original_llama_model.generate(inputs_ids,max_new_tokens=512,)
output_text=self.original_llama_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
output_text = output_text.split('</s>')[0] # remove the stop sign </s>
output_text = output_text.replace("<s>", "")
output_text = output_text.split(r'[/INST]')[-1].strip()
answers.append(output_text)
return answers
# def inference_RAG_text_only(self, instructions, context_list):
# # Use VideoLLM as the answer module
# seg_tokens=[]
# for instruction,context in zip(instructions,context_list):
# context=clean_text(context)
# context_prompt=f"<s>[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
# question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]"
# context_inputs = self.model.llama_tokenizer(context_prompt,add_special_tokens=True, return_tensors="pt", padding=True, truncation=True,max_length=3500)
# question_inputs = self.model.llama_tokenizer(question_prompt, return_tensors="pt", padding=True, truncation=True,max_length=300)
# # concate the context and the question together
# inputs_ids=torch.cat((context_inputs['input_ids'],question_inputs['input_ids']),dim=1).to('cuda')
# seg_tokens.append(inputs_ids)
# with torch.no_grad():
# answers = self.model.generate_text_only(images=None,seg_tokens=seg_tokens,max_new_tokens=512)
# return answers
def inference_RAG_chatGPT(self, instructions: str, context_list) -> str:
batch_preds=[]
for context,instruction in zip(context_list,instructions):
prompt="Your task is to answer questions for long video \n\n Given these related information from the most related clips: \n "+context +"\n\n" +"Answer this question: "+instruction
while True:
try:
response = client.ChatCompletion.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": prompt
}],
)
answer=response.choices[0].message['content']
batch_preds.append(answer)
break
except Exception as e:
print("chat gpt error",e)
time.sleep(50)
return batch_preds
def get_most_related_clips(self,related_context_keys):
most_related_clips=set()
for context_key in related_context_keys:
if len(context_key.split('__'))>1:
most_related_clips.add(context_key.split('__')[1])
if len(most_related_clips)==self.args.neighbours:
break
assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}"
return list(most_related_clips)
def get_related_context(self, external_memory,related_context_keys):
related_information=""
most_related_clips=self.get_most_related_clips(related_context_keys)
for clip_name in most_related_clips:
clip_conversation=""
general_sum=""
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if clip_name in key and 'subtitle' in key:
clip_conversation="Clip Subtitles: "+external_memory.documents[key]
related_information+=f"{general_sum},{clip_conversation}\n"
return related_information
def inference(self,video_path, use_subtitles=True, instruction="", number_of_neighbours=3):
start_time = time.time()
video_name = os.path.splitext(os.path.basename(video_path))[0]
self.args.neighbours = number_of_neighbours
print(f"Video name: {video_name}")
video_duration = mp.VideoFileClip(video_path).duration
print(f"Video duration: {video_duration:.2f} seconds")
# if the video duration is more than 2 minutes we need to run the long inference
if video_duration > 180 :
print("Long video")
# if the video data is already stored in the external memory, we can use it directly else we need to run the long inference
file_path=f'new_workspace/clips_summary/demo/{video_name}.json'
if not os.path.exists(file_path):
print("Clips summary is not ready")
videos_list,tmp_save_path=self.split_long_video_into_clips(video_path)
subtitle_paths = []
for video_p in videos_list:
clip_path = os.path.join(tmp_save_path, video_p)
subtitle_path = self.get_subtitles(clip_path) if use_subtitles else None
subtitle_paths.append(subtitle_path)
clips_summary = self.long_inference_video(videos_list,tmp_save_path,subtitle_paths)
else:
print("External memory is ready")
os.makedirs("new_workspace/embedding/demo", exist_ok=True)
os.makedirs("new_workspace/open_ai_embedding/demo", exist_ok=True)
if self.args.use_openai_embedding:
embedding_path=f"new_workspace/open_ai_embedding/demo/{video_name}.pkl"
else:
embedding_path=f"new_workspace/embedding/demo/{video_name}.pkl"
external_memory=MemoryIndex(self.args.neighbours,use_openai=self.args.use_openai_embedding)
if os.path.exists(embedding_path):
print("Loading embeddings from pkl file")
external_memory.load_embeddings_from_pkl(embedding_path)
else:
# will embed the information and save it in the pkl file
external_memory.load_documents_from_json(file_path,embedding_path)
# get the most similar context from the external memory to this instruction
related_context_documents,related_context_keys = external_memory.search_by_similarity(instruction)
related_information=self.get_related_context(external_memory,related_context_keys)
pred=self.inference_RAG([instruction],[related_information])
else:
print("Short video")
self.video_name=video_path.split('/')[-1].split('.')[0]
pred=self.short_video_inference(video_path,instruction,use_subtitles)
processing_time = time.time() - start_time
print(f"Processing time: {processing_time:.2f} seconds")
return {
'video_name': os.path.splitext(os.path.basename(video_path))[0],
'pred': pred,
}
def run_batch(self, video_paths, instructions,subtitle_paths,previous_caption="") -> List[str]:
prepared_images_batch = []
prepared_instructions_batch = []
lengths_batch = []
videos_conversations=[]
for i,video_path, instruction in zip(range(len(video_paths)),video_paths, instructions):
subtitle_path = subtitle_paths[i]
prepared_images, prepared_instruction,video_conversation = self.prepare_input( video_path, subtitle_path, instruction,previous_caption)
if prepared_images is None:
print(f"Error: Unable to open video at {video_path}. Check the path and try again.")
continue
videos_conversations.append(video_conversation)
conversation = CONV_VISION.copy()
conversation.system = ""
conversation.append_message(conversation.roles[0], prepared_instruction)
conversation.append_message(conversation.roles[1], None)
prepared_instructions_batch.append(conversation.get_prompt())
prepared_images_batch.append(prepared_images)
lengths_batch.append(len(prepared_images))
if not prepared_images_batch:
return []
prepared_images_batch = torch.stack(prepared_images_batch)
answers=self.model.generate(prepared_images_batch, prepared_instructions_batch, max_new_tokens=self.args.max_new_tokens, do_sample=False, lengths=lengths_batch, num_beams=1)
return answers , videos_conversations
def run_images_features (self,img_embeds,prepared_instruction):
lengths=[]
prompts=[]
for i in range(img_embeds.shape[0]):
conv = CONV_VISION.copy()
conv.system = ""
conv.append_message(conv.roles[0], prepared_instruction[i])
conv.append_message(conv.roles[1], None)
prompts.append(conv.get_prompt())
lengths.append(len(img_embeds[i]))
answers = self.model.generate(images=None,img_embeds=img_embeds,texts=prompts, max_new_tokens=300, do_sample=False, lengths=lengths,num_beams=1)
return answers
def run_images (self,prepared_images,prepared_instruction):
lengths=[]
prompts=[]
for i in range(prepared_images.shape[0]):
conv = CONV_VISION.copy()
conv.system = ""
conv.append_message(conv.roles[0], prepared_instruction[i])
conv.append_message(conv.roles[1], None)
prompts.append(conv.get_prompt())
lengths.append(len(prepared_images[i]))
answers = self.model.generate(prepared_images, prompts, max_new_tokens=300, do_sample=False, lengths=lengths,num_beams=1)
return answers