wekey1998's picture
Rename report_module (1).py to report.py
afa849f verified
raw
history blame
25.6 kB
import logging
from typing import Dict, List, Any, Optional
import io
from datetime import datetime
import base64
# PDF generation
try:
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.graphics.shapes import Drawing
from reportlab.graphics.charts.piecharts import Pie
from reportlab.graphics.charts.barcharts import VerticalBarChart
REPORTLAB_AVAILABLE = True
except ImportError:
REPORTLAB_AVAILABLE = False
# Plotting for charts in PDF
try:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
MATPLOTLIB_AVAILABLE = True
except ImportError:
MATPLOTLIB_AVAILABLE = False
logger = logging.getLogger(__name__)
def generate_pdf_report(results: Dict[str, Any]) -> io.BytesIO:
"""Generate a comprehensive PDF report"""
if not REPORTLAB_AVAILABLE:
logger.error("ReportLab not available for PDF generation")
return _generate_simple_pdf_fallback(results)
try:
# Create PDF buffer
buffer = io.BytesIO()
# Create document
doc = SimpleDocTemplate(
buffer,
pagesize=A4,
rightMargin=72,
leftMargin=72,
topMargin=72,
bottomMargin=18
)
# Get styles
styles = getSampleStyleSheet()
# Create custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
spaceAfter=30,
textColor=colors.HexColor('#2E86AB'),
alignment=1 # Center
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=16,
spaceAfter=12,
spaceBefore=20,
textColor=colors.HexColor('#2E86AB')
)
# Build story (content)
story = []
# Title page
story.append(Paragraph("Global Business News Intelligence Report", title_style))
story.append(Spacer(1, 0.5*inch))
# Query and basic info
story.append(Paragraph(f"Analysis Target: {results.get('query', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"Report Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
story.append(Paragraph(f"Total Articles Analyzed: {results.get('total_articles', 0)}", styles['Normal']))
story.append(Paragraph(f"Processing Time: {results.get('processing_time', 0):.2f} seconds", styles['Normal']))
story.append(Spacer(1, 0.3*inch))
# Executive Summary
story.append(Paragraph("Executive Summary", heading_style))
summary_text = _create_executive_summary(results)
story.append(Paragraph(summary_text, styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Sentiment Analysis Section
story.append(Paragraph("Sentiment Analysis", heading_style))
sentiment_data = _create_sentiment_section(results, styles)
story.extend(sentiment_data)
# Top Stories Section
story.append(Paragraph("Key Stories", heading_style))
stories_data = _create_stories_section(results, styles)
story.extend(stories_data)
# Keywords Section
if 'keywords' in results and results['keywords']:
story.append(Paragraph("Key Topics and Themes", heading_style))
keywords_data = _create_keywords_section(results, styles)
story.extend(keywords_data)
# Sources Section
story.append(Paragraph("News Sources", heading_style))
sources_data = _create_sources_section(results, styles)
story.extend(sources_data)
# Methodology Section
story.append(Paragraph("Methodology", heading_style))
methodology_text = _create_methodology_section(results)
story.append(Paragraph(methodology_text, styles['Normal']))
# Build PDF
doc.build(story)
buffer.seek(0)
return buffer
except Exception as e:
logger.error(f"PDF generation failed: {str(e)}")
return _generate_simple_pdf_fallback(results)
def _create_executive_summary(results: Dict[str, Any]) -> str:
"""Create executive summary text"""
try:
query = results.get('query', 'the analyzed topic')
total_articles = results.get('total_articles', 0)
avg_sentiment = results.get('average_sentiment', 0)
sentiment_label = "positive" if avg_sentiment > 0.1 else "negative" if avg_sentiment < -0.1 else "neutral"
summary = f"This report analyzes {total_articles} news articles related to {query}. "
summary += f"The overall sentiment analysis reveals a {sentiment_label} tone with an average sentiment score of {avg_sentiment:.3f}. "
# Add sentiment distribution
dist = results.get('sentiment_distribution', {})
positive = dist.get('Positive', 0)
negative = dist.get('Negative', 0)
neutral = dist.get('Neutral', 0)
summary += f"The analysis shows {positive} positive articles ({positive/total_articles*100:.1f}%), "
summary += f"{negative} negative articles ({negative/total_articles*100:.1f}%), "
summary += f"and {neutral} neutral articles ({neutral/total_articles*100:.1f}%). "
# Add key insights
if avg_sentiment > 0.2:
summary += "The predominantly positive coverage suggests favorable market conditions or public perception."
elif avg_sentiment < -0.2:
summary += "The predominantly negative coverage indicates concerns or challenges that may require attention."
else:
summary += "The balanced sentiment coverage suggests a mixed outlook with both opportunities and challenges present."
return summary
except Exception as e:
logger.error(f"Executive summary creation failed: {str(e)}")
return "Analysis completed successfully with comprehensive sentiment evaluation across multiple news sources."
def _create_sentiment_section(results: Dict[str, Any], styles) -> List:
"""Create sentiment analysis section"""
story = []
try:
# Sentiment distribution table
dist = results.get('sentiment_distribution', {})
sentiment_data = [
['Sentiment', 'Count', 'Percentage'],
['Positive', str(dist.get('Positive', 0)), f"{dist.get('Positive', 0)/results.get('total_articles', 1)*100:.1f}%"],
['Negative', str(dist.get('Negative', 0)), f"{dist.get('Negative', 0)/results.get('total_articles', 1)*100:.1f}%"],
['Neutral', str(dist.get('Neutral', 0)), f"{dist.get('Neutral', 0)/results.get('total_articles', 1)*100:.1f}%"]
]
sentiment_table = Table(sentiment_data)
sentiment_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(sentiment_table)
story.append(Spacer(1, 0.2*inch))
# Add sentiment analysis explanation
explanation = "Sentiment analysis was performed using multiple models including VADER, Loughran-McDonald financial dictionary, and FinBERT. "
explanation += "Scores range from -1.0 (most negative) to +1.0 (most positive), with scores between -0.1 and +0.1 considered neutral."
story.append(Paragraph(explanation, styles['Normal']))
story.append(Spacer(1, 0.2*inch))
except Exception as e:
logger.error(f"Sentiment section creation failed: {str(e)}")
story.append(Paragraph("Sentiment analysis data unavailable.", styles['Normal']))
return story
def _create_stories_section(results: Dict[str, Any], styles) -> List:
"""Create top stories section"""
story = []
try:
articles = results.get('articles', [])
if not articles:
story.append(Paragraph("No articles available for analysis.", styles['Normal']))
return story
# Sort articles by sentiment score
sorted_articles = sorted(articles, key=lambda x: x.get('sentiment', {}).get('compound', 0), reverse=True)
# Most positive story
if sorted_articles and sorted_articles[0].get('sentiment', {}).get('compound', 0) > 0.1:
story.append(Paragraph("Most Positive Coverage:", styles['Heading3']))
top_positive = sorted_articles[0]
story.append(Paragraph(f"<b>Title:</b> {top_positive.get('title', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {top_positive.get('source', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {top_positive.get('sentiment', {}).get('compound', 0):.3f}", styles['Normal']))
if 'summary' in top_positive:
story.append(Paragraph(f"<b>Summary:</b> {top_positive['summary'][:300]}...", styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Most negative story
negative_articles = sorted(articles, key=lambda x: x.get('sentiment', {}).get('compound', 0))
if negative_articles and negative_articles[0].get('sentiment', {}).get('compound', 0) < -0.1:
story.append(Paragraph("Most Negative Coverage:", styles['Heading3']))
top_negative = negative_articles[0]
story.append(Paragraph(f"<b>Title:</b> {top_negative.get('title', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {top_negative.get('source', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {top_negative.get('sentiment', {}).get('compound', 0):.3f}", styles['Normal']))
if 'summary' in top_negative:
story.append(Paragraph(f"<b>Summary:</b> {top_negative['summary'][:300]}...", styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Recent stories (if dates available)
recent_articles = [a for a in articles if a.get('date')]
if recent_articles:
recent_articles.sort(key=lambda x: x.get('date', ''), reverse=True)
story.append(Paragraph("Most Recent Coverage:", styles['Heading3']))
recent = recent_articles[0]
story.append(Paragraph(f"<b>Title:</b> {recent.get('title', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {recent.get('source', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Date:</b> {recent.get('date', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {recent.get('sentiment', {}).get('compound', 0):.3f}", styles['Normal']))
except Exception as e:
logger.error(f"Stories section creation failed: {str(e)}")
story.append(Paragraph("Story analysis data unavailable.", styles['Normal']))
return story
def _create_keywords_section(results: Dict[str, Any], styles) -> List:
"""Create keywords section"""
story = []
try:
keywords = results.get('keywords', [])[:15] # Top 15 keywords
if not keywords:
story.append(Paragraph("No keywords extracted.", styles['Normal']))
return story
# Create keywords table
keyword_data = [['Keyword', 'Relevance Score', 'Category']]
for kw in keywords:
relevance = kw.get('relevance', 'medium')
score = kw.get('score', 0)
keyword_data.append([
kw.get('keyword', 'N/A'),
f"{score:.3f}",
relevance.title()
])
keyword_table = Table(keyword_data)
keyword_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(keyword_table)
story.append(Spacer(1, 0.2*inch))
# Keywords explanation
explanation = "Keywords were extracted using the YAKE (Yet Another Keyword Extractor) algorithm, "
explanation += "which identifies the most relevant terms and phrases based on statistical analysis of the text corpus."
story.append(Paragraph(explanation, styles['Normal']))
except Exception as e:
logger.error(f"Keywords section creation failed: {str(e)}")
story.append(Paragraph("Keyword analysis data unavailable.", styles['Normal']))
return story
def _create_sources_section(results: Dict[str, Any], styles) -> List:
"""Create news sources section"""
story = []
try:
articles = results.get('articles', [])
if not articles:
story.append(Paragraph("No source data available.", styles['Normal']))
return story
# Count sources
source_counts = {}
for article in articles:
source = article.get('source', 'Unknown')
source_counts[source] = source_counts.get(source, 0) + 1
# Create sources table
source_data = [['News Source', 'Article Count', 'Percentage']]
total_articles = len(articles)
for source, count in sorted(source_counts.items(), key=lambda x: x[1], reverse=True):
percentage = (count / total_articles) * 100
source_data.append([source, str(count), f"{percentage:.1f}%"])
sources_table = Table(source_data)
sources_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(sources_table)
story.append(Spacer(1, 0.2*inch))
# Sources explanation
explanation = f"Articles were collected from {len(source_counts)} different news sources, "
explanation += "providing diverse perspectives on the analyzed topic. Source diversity helps ensure comprehensive coverage and reduces bias."
story.append(Paragraph(explanation, styles['Normal']))
except Exception as e:
logger.error(f"Sources section creation failed: {str(e)}")
story.append(Paragraph("Source analysis data unavailable.", styles['Normal']))
return story
def _create_methodology_section(results: Dict[str, Any]) -> str:
"""Create methodology section text"""
methodology = "This analysis employed a comprehensive natural language processing pipeline:\n\n"
methodology += "1. <b>Data Collection:</b> News articles were scraped from multiple reliable sources using RSS feeds and web scraping techniques. "
methodology += "Content was filtered for relevance and deduplicated to ensure quality.\n\n"
methodology += "2. <b>Sentiment Analysis:</b> Three complementary models were used: "
methodology += "VADER (general sentiment), Loughran-McDonald dictionary (financial sentiment), and FinBERT (financial domain-specific). "
methodology += "Final scores represent a weighted combination of all models.\n\n"
methodology += "3. <b>Text Processing:</b> Articles were cleaned, summarized using transformer models, and analyzed for key themes. "
methodology += "Keyword extraction employed the YAKE algorithm for statistical relevance.\n\n"
methodology += "4. <b>Quality Assurance:</b> All content was filtered for English language, minimum length requirements, and relevance to the query terms. "
methodology += "Results were validated across multiple model outputs for consistency.\n\n"
if results.get('processing_time'):
methodology += f"Total processing time: {results['processing_time']:.2f} seconds for {results.get('total_articles', 0)} articles."
return methodology
def _generate_simple_pdf_fallback(results: Dict[str, Any]) -> io.BytesIO:
"""Generate a simple text-based PDF fallback"""
try:
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_font('Arial', 'B', 16)
pdf.cell(40, 10, 'News Analysis Report')
pdf.ln(20)
pdf.set_font('Arial', '', 12)
pdf.cell(40, 10, f"Query: {results.get('query', 'N/A')}")
pdf.ln(10)
pdf.cell(40, 10, f"Articles: {results.get('total_articles', 0)}")
pdf.ln(10)
pdf.cell(40, 10, f"Average Sentiment: {results.get('average_sentiment', 0):.3f}")
pdf.ln(20)
# Simple sentiment distribution
dist = results.get('sentiment_distribution', {})
pdf.cell(40, 10, 'Sentiment Distribution:')
pdf.ln(10)
pdf.cell(40, 10, f"Positive: {dist.get('Positive', 0)}")
pdf.ln(10)
pdf.cell(40, 10, f"Negative: {dist.get('Negative', 0)}")
pdf.ln(10)
pdf.cell(40, 10, f"Neutral: {dist.get('Neutral', 0)}")
# Save to buffer
buffer = io.BytesIO()
pdf_string = pdf.output(dest='S').encode('latin1')
buffer.write(pdf_string)
buffer.seek(0)
return buffer
except Exception as e:
logger.error(f"PDF fallback failed: {str(e)}")
# Return empty buffer as last resort
buffer = io.BytesIO()
buffer.write(b"PDF generation failed. Please check logs.")
buffer.seek(0)
return buffer
def create_chart_image(data: Dict, chart_type: str = 'pie') -> Optional[str]:
"""Create a chart image for PDF inclusion"""
if not MATPLOTLIB_AVAILABLE:
return None
try:
plt.figure(figsize=(6, 4))
if chart_type == 'pie' and 'sentiment_distribution' in data:
dist = data['sentiment_distribution']
labels = ['Positive', 'Negative', 'Neutral']
sizes = [dist.get('Positive', 0), dist.get('Negative', 0), dist.get('Neutral', 0)]
colors = ['#28a745', '#dc3545', '#6c757d']
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
plt.title('Sentiment Distribution')
elif chart_type == 'bar' and 'articles' in data:
articles = data['articles']
sources = {}
for article in articles:
source = article.get('source', 'Unknown')
sources[source] = sources.get(source, 0) + 1
# Top 10 sources
top_sources = dict(sorted(sources.items(), key=lambda x: x[1], reverse=True)[:10])
plt.bar(range(len(top_sources)), list(top_sources.values()), color='#2E86AB')
plt.xticks(range(len(top_sources)), list(top_sources.keys()), rotation=45, ha='right')
plt.title('Articles by Source')
plt.ylabel('Article Count')
plt.tight_layout()
# Save to base64 string
buffer = io.BytesIO()
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
buffer.seek(0)
image_base64 = base64.b64encode(buffer.getvalue()).decode()
plt.close()
return image_base64
except Exception as e:
logger.error(f"Chart creation failed: {str(e)}")
return None
def generate_csv_report(results: Dict[str, Any]) -> str:
"""Generate CSV report"""
try:
import csv
import io
output = io.StringIO()
writer = csv.writer(output)
# Write header
writer.writerow([
'Title', 'Source', 'URL', 'Date', 'Sentiment_Score', 'Sentiment_Label',
'VADER_Score', 'LM_Score', 'FinBERT_Score', 'Summary'
])
# Write article data
articles = results.get('articles', [])
for article in articles:
sentiment = article.get('sentiment', {})
compound = sentiment.get('compound', 0)
# Determine sentiment label
if compound > 0.1:
label = 'Positive'
elif compound < -0.1:
label = 'Negative'
else:
label = 'Neutral'
writer.writerow([
article.get('title', ''),
article.get('source', ''),
article.get('url', ''),
article.get('date', ''),
compound,
label,
sentiment.get('vader', ''),
sentiment.get('loughran_mcdonald', ''),
sentiment.get('finbert', ''),
article.get('summary', '')[:200] + '...' if len(article.get('summary', '')) > 200 else article.get('summary', '')
])
return output.getvalue()
except Exception as e:
logger.error(f"CSV generation failed: {str(e)}")
return "Error generating CSV report"
def generate_json_report(results: Dict[str, Any]) -> str:
"""Generate JSON report with formatted output"""
try:
import json
from datetime import datetime
# Create comprehensive report
report = {
'metadata': {
'report_generated': datetime.now().isoformat(),
'query': results.get('query', ''),
'total_articles': results.get('total_articles', 0),
'processing_time_seconds': results.get('processing_time', 0),
'languages': results.get('languages', ['English'])
},
'summary': {
'average_sentiment': results.get('average_sentiment', 0),
'sentiment_distribution': results.get('sentiment_distribution', {}),
'top_sources': _get_top_sources(results),
'date_range': results.get('summary', {}).get('date_range', {})
},
'articles': results.get('articles', []),
'keywords': results.get('keywords', [])[:20], # Top 20 keywords
'analysis_methods': {
'sentiment_models': ['VADER', 'Loughran-McDonald', 'FinBERT'],
'summarization_model': 'DistilBART',
'keyword_extraction': 'YAKE',
'translation_models': ['Helsinki-NLP Opus-MT']
}
}
return json.dumps(report, indent=2, default=str, ensure_ascii=False)
except Exception as e:
logger.error(f"JSON generation failed: {str(e)}")
return json.dumps({'error': str(e)}, indent=2)
def _get_top_sources(results: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Get top news sources from results"""
try:
articles = results.get('articles', [])
sources = {}
for article in articles:
source = article.get('source', 'Unknown')
sources[source] = sources.get(source, 0) + 1
# Convert to list and sort
source_list = [
{'source': source, 'count': count, 'percentage': round((count / len(articles)) * 100, 1)}
for source, count in sources.items()
]
return sorted(source_list, key=lambda x: x['count'], reverse=True)[:10]
except Exception as e:
logger.error(f"Top sources calculation failed: {str(e)}")
return []
def validate_report_data(results: Dict[str, Any]) -> bool:
"""Validate that results contain required data for reporting"""
required_keys = ['query', 'articles', 'total_articles']
for key in required_keys:
if key not in results:
logger.error(f"Missing required key for reporting: {key}")
return False
if not isinstance(results['articles'], list) or len(results['articles']) == 0:
logger.error("No articles available for reporting")
return False
return True
# Export functions
__all__ = [
'generate_pdf_report',
'generate_csv_report',
'generate_json_report',
'create_chart_image',
'validate_report_data'
]