Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
# Mutation site headers removed 3614, | |
mutation_site_headers_actual = [ | |
3244, 3297, 3350, 3399, 3455, 3509, 3562, | |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039, | |
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455, | |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882 | |
] | |
# Thresholds for each mutation site removed 3614: 0.091557752, | |
thresholds_actual = pd.Series({ | |
3244: 1.096910677, 3297: 0.923658795, 3350: 0.668939037, 3399: 0.914305214, | |
3455: 1.297392984, 3509: 1.812636208, 3562: 1.185047484, | |
3665: 0.298007308, 3720: 0.58857544, 3773: 0.882561082, 3824: 1.149082617, | |
3879: 0.816050702, 3933: 2.936517653, 3985: 1.597166791, 4039: 0.962108082, | |
4089: 1.479783497, 4145: 0.305853225, 4190: 1.311869541, 4245: 1.707556905, | |
4298: 0.875013076, 4349: 1.227704526, 4402: 0.593206446, 4455: 1.179633137, | |
4510: 1.272477799, 4561: 1.293841573, 4615: 1.16821885, 4668: 1.40306, | |
4720: 0.706530878, 4773: 1.483114072, 4828: 0.954939873, 4882: 1.47524328 | |
}) | |
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455 | |
mutation_site_headers = [ | |
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039, | |
3985, 3933, 3879, 3824, 3773, 3720, 3665, | |
3562, 3509, 3455, 3399, 3350, 3297, 3244, # 1–23 | |
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455 # 24–32 | |
] | |
# Thresholds reordered accordingly | |
thresholds = pd.Series({h: thresholds_actual[h] for h in mutation_site_headers}) | |
# === Utility functions === | |
# Voyager ASCII 6-bit conversion table | |
voyager_table = { | |
i: ch for i, ch in enumerate([ | |
' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', | |
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', | |
'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', | |
'3', '4', '5', '6', '7', '8', '9', '.', ',', '(', | |
')','+', '-', '*', '/', '=', '$', '!', ':', '%', | |
'"', '#', '@', "'", '?', '&' | |
]) | |
} | |
reverse_voyager_table = {v: k for k, v in voyager_table.items()} | |
def string_to_binary_labels(s: str) -> list[int]: | |
bits = [] | |
for char in s: | |
val = reverse_voyager_table.get(char.upper(), 0) | |
char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)] | |
bits.extend(char_bits) | |
return bits | |
def binary_labels_to_string(bits: list[int]) -> str: | |
chars = [] | |
for i in range(0, len(bits), 6): | |
chunk = bits[i:i+6] | |
if len(chunk) < 6: | |
chunk += [0] * (6 - len(chunk)) | |
val = sum(b << (5 - j) for j, b in enumerate(chunk)) | |
chars.append(voyager_table.get(val, '?')) | |
return ''.join(chars) | |
# === Streamlit App === | |
st.title("ASCII & Binary Label Converter") | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Text to Binary Labels (31)", "EF → Binary → String (31)", "Text to Binary Labels (32)", "EF → Binary (32)", "Binary → String"]) | |
# Tab 1: Text to Binary | |
with tab1: | |
user_input = st.text_input("Enter text", value="DNA", key="input_text_31") | |
if user_input: | |
ascii_codes = [reverse_voyager_table.get(c.upper(), 0) for c in user_input] | |
binary_labels = string_to_binary_labels(user_input) | |
# st.subheader("Voyager ASCII Codes") | |
# st.write(ascii_codes) | |
st.subheader("Binary Labels per Character") | |
grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)] | |
for i, bits in enumerate(grouped): | |
st.write(f"'{user_input[i]}' → {bits}") | |
st.subheader("Binary Labels (31-bit groups)") | |
groups = [] | |
for i in range(0, len(binary_labels), 31): | |
group = binary_labels[i:i+31] | |
group += [0] * (31 - len(group)) | |
groups.append(group + [sum(group)]) | |
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.download_button("Download as CSV", df.to_csv(index=False), "text_31_binary_labels.csv", key="download_csv_tab1_31csv") | |
ascending_headers = sorted(mutation_site_headers_actual) | |
df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]].copy() | |
if "3614" not in df_sorted.columns: | |
idx = df_sorted.columns.get_loc("3562") + 1 # Insert after 3562 | |
df_sorted.insert(idx, "3614", 0) | |
st.subheader("Binary Labels (Ascending Order 3244 → 4882)") | |
st.dataframe(df_sorted) | |
st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv", key="download_csv_tab1_ascend") | |
# === Robot Preparation Script Generation === | |
st.subheader("Robot Preparation Script") | |
robot_template = pd.read_csv("/home/user/app/Robot.csv", skiprows=3) | |
robot_template.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name'] | |
# Add Sample numbers for well referencing | |
df_sorted.insert(0, 'Sample', range(1, len(df_sorted)+1)) | |
# Step 1: Count the number of edited sites per row | |
df_sorted['# donors'] = df_sorted.iloc[:, 1:].sum(axis=1) | |
# Step 2: Calculate volume per donor (32 / # donors) | |
df_sorted['volume donors (µl)'] = 32 / df_sorted['# donors'] | |
# Step 3: Generate the robot script | |
robot_script = [] | |
source_wells = robot_template['Source'].unique().tolist() | |
if len(source_wells) < 32: | |
source_wells += [f"Fake{i}" for i in range(32 - len(source_wells))] | |
source_wells = source_wells[:32] | |
st.write(f"Number of source wells: {len(source_wells)}") | |
st.write(f"Number of binary columns: {len(df_sorted.columns[1:33])}") | |
for i, col in enumerate(df_sorted.columns[1:33]): | |
for row_idx, sample in df_sorted.iterrows(): | |
if sample[col] == 1: | |
source = source_wells[i] | |
dest = f"A{sample['Sample']}" | |
vol = round(sample['volume donors (µl)'], 2) | |
robot_script.append({'Source': source, 'Destination': dest, 'Volume': vol}) | |
robot_script_df = pd.DataFrame(robot_script) | |
st.dataframe(robot_script_df) | |
st.download_button("Download Robot Script CSV", robot_script_df.to_csv(index=False), "robot_script.csv", key="download_csv_tab1_robot") | |
# === Robot Preparation Script (Custom Order: 4402 → 3244, 4882 → 4455) === | |
st.subheader("Robot Preparation Script (Custom Order: 4402 → 3244, 4882 → 4455)") | |
# Include 3614 in custom header list | |
custom_headers = [ | |
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039, | |
3985, 3933, 3879, 3824, 3773, 3720, 3665, 3614, | |
3562, 3509, 3455, 3399, 3350, 3297, 3244, | |
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455 | |
] | |
# Create a copy of df and reorder columns based on custom headers | |
df_sorted_custom = df[[str(h) for h in custom_headers if str(h) in df.columns]].copy() | |
# Insert fake column "3614" if missing | |
if "3614" not in df_sorted_custom.columns: | |
idx = custom_headers.index(3614) | |
insert_at = idx # 0-based index | |
df_sorted_custom.insert(insert_at, "3614", 0) | |
# Insert 'Sample' if missing | |
if "Sample" not in df_sorted_custom.columns: | |
df_sorted_custom.insert(0, 'Sample', range(1, len(df_sorted_custom) + 1)) | |
# Calculate donor info | |
df_sorted_custom['# donors'] = df_sorted_custom.iloc[:, 1:].sum(axis=1) | |
df_sorted_custom['volume donors (µl)'] = 32 / df_sorted_custom['# donors'] | |
# Generate robot script | |
robot_script_custom = [] | |
for i, col in enumerate(df_sorted_custom.columns[1:33]): # 32 columns after Sample | |
for row_idx, sample in df_sorted_custom.iterrows(): | |
if sample[col] == 1: | |
source = source_wells[i] | |
dest = f"A{sample['Sample']}" | |
vol = round(sample['volume donors (µl)'], 2) | |
robot_script_custom.append({'Source': source, 'Destination': dest, 'Volume': vol}) | |
robot_script_custom_df = pd.DataFrame(robot_script_custom) | |
st.dataframe(robot_script_custom_df) | |
st.download_button("Download Custom Order Robot Script CSV", robot_script_custom_df.to_csv(index=False), "robot_script_custom_order.csv", key="download_csv_tab1_robot_custom") | |
# Tab 2: EF → Binary | |
with tab2: | |
st.write("Upload an Editing Frequency CSV or enter manually:") | |
st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.") | |
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef") | |
if ef_file: | |
ef_df = pd.read_csv(ef_file, header=None) | |
ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual)] | |
else: | |
ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual)]) | |
edited_df = st.data_editor(ef_df, num_rows="dynamic") | |
if st.button("Convert to Binary Labels", key="convert_button_tab2"): | |
binary_part = pd.DataFrame() | |
for col in sorted(mutation_site_headers_actual): | |
col_str = str(col) | |
threshold = thresholds_actual[col] | |
binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int) | |
binary_reordered = binary_part[[str(h) for h in mutation_site_headers if str(h) in binary_part.columns]] | |
def color_binary(val): | |
if val == 1: return "background-color: lightgreen" | |
if val == 0: return "background-color: lightcoral" | |
return "" | |
st.subheader("Binary Labels (Reordered 4402→3244, 4882→4455)") | |
styled = binary_reordered.style.applymap(color_binary) | |
st.dataframe(styled) | |
st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv", key="download_csv_tab2_csv") | |
all_bits = binary_reordered.values.flatten().tolist() | |
decoded_string = binary_labels_to_string(all_bits) | |
st.subheader("Decoded String (continuous across rows)") | |
st.write(decoded_string) | |
st.subheader("Binary Labels (Ascending 3244→4882)") | |
st.dataframe(binary_part.style.applymap(color_binary)) | |
st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv", key="download_csv_tab2_ascend") | |
all_bits = binary_part.values.flatten().tolist() | |
decoded_string = binary_labels_to_string(all_bits) | |
st.subheader("Decoded String (continuous across rows)") | |
st.write(decoded_string) | |
# Mutation site headers did not remove 3614, | |
mutation_site_headers_actual_3614 = [ | |
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614, | |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039, | |
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455, | |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882 | |
] | |
# Thresholds for each mutation site removed 3614: 0.091557752, | |
thresholds_actual_3614 = pd.Series({ | |
3244: 1.096910677, 3297: 0.923658795, 3350: 0.668939037, 3399: 0.914305214, | |
3455: 1.297392984, 3509: 1.812636208, 3562: 1.185047484, 3614: 0.157969131375, | |
3665: 0.298007308, 3720: 0.58857544, 3773: 0.882561082, 3824: 1.149082617, | |
3879: 0.816050702, 3933: 2.936517653, 3985: 1.597166791, 4039: 0.962108082, | |
4089: 1.479783497, 4145: 0.305853225, 4190: 1.311869541, 4245: 1.707556905, | |
4298: 0.875013076, 4349: 1.227704526, 4402: 0.593206446, 4455: 1.179633137, | |
4510: 1.272477799, 4561: 1.293841573, 4615: 1.16821885, 4668: 1.40306, | |
4720: 0.706530878, 4773: 1.483114072, 4828: 0.954939873, 4882: 1.47524328 | |
}) | |
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455 | |
mutation_site_headers_3614 = [ | |
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039, | |
3985, 3933, 3879, 3824, 3773, 3720, 3665, 3614, | |
3562, 3509, 3455, 3399, 3350, 3297, 3244, # 1–23 | |
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455 # 24–32 | |
] | |
# Thresholds reordered accordingly | |
thresholds_3614 = pd.Series({h: thresholds_actual_3614[h] for h in mutation_site_headers_3614}) | |
# === Utility functions === | |
reverse_voyager_table = {v: k for k, v in voyager_table.items()} | |
# Tab 3: Text to Binary (32) | |
with tab3: | |
user_input_32 = st.text_input("Enter text", value="DNA", key="input_text_32") | |
if user_input_32: | |
ascii_codes = [ord(c) for c in user_input_32] | |
binary_labels = string_to_binary_labels(user_input_32) | |
st.subheader("ASCII Codes") | |
st.write(ascii_codes) | |
st.subheader("Binary Labels per Character") | |
grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)] | |
for i, bits in enumerate(grouped): | |
st.write(f"'{user_input_32[i]}' → {bits}") | |
st.subheader("Binary Labels (32-bit groups)") | |
groups = [] | |
for i in range(0, len(binary_labels), 32): | |
group = binary_labels[i:i+32] | |
group += [0] * (32 - len(group)) | |
groups.append(group + [sum(group)]) | |
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers_3614] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.download_button("Download as CSV", df.to_csv(index=False), "text_32_binary_labels.csv", key="download_csv_tab3_csv") | |
ascending_headers = sorted(mutation_site_headers_actual_3614) | |
df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]] | |
st.subheader("Binary Labels (Ascending Order 3244 → 4882)") | |
st.dataframe(df_sorted) | |
st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv", key="download_csv_tab3_ascend") | |
# === Robot Preparation Script Generation === | |
st.subheader("Robot Preparation Script") | |
robot_template = pd.read_csv("/home/user/app/Robot.csv", skiprows=3) | |
robot_template.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name'] | |
# Add Sample numbers for well referencing | |
df_sorted.insert(0, 'Sample', range(1, len(df_sorted)+1)) | |
# Step 1: Count the number of edited sites per row | |
df_sorted['# donors'] = df_sorted.iloc[:, 1:].sum(axis=1) | |
# Step 2: Calculate volume per donor (32 / # donors) | |
df_sorted['volume donors (µl)'] = 32 / df_sorted['# donors'] | |
# Step 3: Generate the robot script | |
robot_script = [] | |
source_wells = robot_template['Source'].unique().tolist()[:32] | |
for i, col in enumerate(df_sorted.columns[1:33]): | |
for row_idx, sample in df_sorted.iterrows(): | |
if sample[col] == 1: | |
source = source_wells[i] | |
dest = f"A{sample['Sample']}" | |
vol = round(sample['volume donors (µl)'], 2) | |
robot_script.append({'Source': source, 'Destination': dest, 'Volume': vol}) | |
robot_script_df = pd.DataFrame(robot_script) | |
st.dataframe(robot_script_df) | |
st.download_button("Download Robot Script CSV", robot_script_df.to_csv(index=False), "robot_script.csv", key="download_csv_tab3_robot") | |
# Tab 4: EF → Binary (32) | |
with tab4: | |
st.write("Upload an Editing Frequency CSV or enter manually:") | |
st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.") | |
ef_file_2 = st.file_uploader("Upload EF CSV", type=["csv"], key="ef2") | |
if ef_file_2: | |
ef_df = pd.read_csv(ef_file_2, header=None) | |
ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual_3614)] | |
else: | |
ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual_3614)]) | |
edited_df = st.data_editor(ef_df, num_rows="dynamic") | |
if st.button("Convert to Binary Labels", key="convert_button_tab4"): | |
binary_part = pd.DataFrame() | |
for col in sorted(mutation_site_headers_actual_3614): | |
col_str = str(col) | |
threshold = thresholds_actual_3614[col] | |
binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int) | |
binary_reordered = binary_part[[str(h) for h in mutation_site_headers_3614 if str(h) in binary_part.columns]] | |
def color_binary(val): | |
if val == 1: return "background-color: lightgreen" | |
if val == 0: return "background-color: lightcoral" | |
return "" | |
st.subheader("Binary Labels (Reordered 4402→3244, 4882→4455)") | |
styled = binary_reordered.style.applymap(color_binary) | |
st.dataframe(styled) | |
st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv", key="download_csv_tab4_csv") | |
all_bits = binary_reordered.values.flatten().tolist() | |
decoded_string = binary_labels_to_string(all_bits) | |
st.subheader("Decoded String (continuous across rows)") | |
st.write(decoded_string) | |
st.subheader("Binary Labels (Ascending 3244→4882)") | |
st.dataframe(binary_part.style.applymap(color_binary)) | |
st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv", key="download_csv_tab4_ascend") | |
all_bits = binary_part.values.flatten().tolist() | |
decoded_string = binary_labels_to_string(all_bits) | |
st.subheader("Decoded String (continuous across rows)") | |
st.write(decoded_string) | |
def get_well_position(sample_index): | |
""" | |
Convert sample index (1-based) into well position (e.g., A1, A2, ..., B1, B2, ..., etc.) | |
""" | |
row_letter = chr(65 + (sample_index - 1) // 12) # 65 = 'A' | |
col_number = ((sample_index - 1) % 12) + 1 | |
return f"{row_letter}{col_number}" | |
# Tab 5: Binary → String | |
with tab5: | |
st.header("Decode Binary Labels to String") | |
# Utility: Track source volumes and update if exceeds limit | |
def track_and_replace_source(source_list, robot_script, volume_limit=170): | |
source_volumes = {} | |
adjusted_sources = [] | |
for entry in robot_script: | |
src = entry['Source'] | |
vol = entry['Volume'] | |
if src not in source_volumes: | |
source_volumes[src] = 0 | |
source_volumes[src] += vol | |
if source_volumes[src] > volume_limit: | |
row_letter = src[0] | |
col_number = src[1:] | |
new_row_letter = chr(ord(row_letter) + 4) | |
new_src = f"{new_row_letter}{col_number}" | |
entry['Source'] = new_src | |
if new_src not in source_volumes: | |
source_volumes[new_src] = 0 | |
source_volumes[new_src] += vol | |
source_volumes[src] -= vol | |
adjusted_sources.append(entry) | |
return adjusted_sources, source_volumes | |
# Utility: Generate fixed-volume D source to all sample wells | |
def generate_fixed_d_source_instructions_to_all_samples(n_samples, fixed_volume=16, volume_limit=170): | |
d_source_volumes = {} | |
d_source_script = [] | |
current_d_index = 1 | |
for i in range(n_samples): | |
dest = get_well_position(i + 1) | |
current_d_well = f"D{current_d_index}" | |
if current_d_well not in d_source_volumes: | |
d_source_volumes[current_d_well] = 0 | |
if d_source_volumes[current_d_well] + fixed_volume > volume_limit: | |
current_d_index += 1 | |
current_d_well = f"D{current_d_index}" | |
d_source_volumes[current_d_well] = 0 | |
d_source_volumes[current_d_well] += fixed_volume | |
tool = 'TS_10' if fixed_volume < 10 else 'TS_50' | |
d_source_script.append({ | |
'Source': current_d_well, | |
'Destination': dest, | |
'Volume': fixed_volume, | |
'Tool': tool | |
}) | |
return d_source_script, d_source_volumes | |
def generate_source_wells(n): | |
wells = [] | |
rows = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' | |
for i in range(n): | |
row = rows[i // 12] # cycle through A, B, C... | |
col = (i % 12) + 1 # 1 to 12 | |
wells.append(f"{row}{col}") | |
return wells | |
# ========== 32-BIT DECODING ========== | |
st.subheader("32-bit Binary per Row") | |
st.write("Upload CSV with 32 columns (0 or 1), no headers, from EF Binary format or enter manually below.") | |
binary32_file = st.file_uploader("Upload 32-bit Binary CSV", type=["csv"], key="binary_32") | |
st.subheader("Optional Metadata (Optional)") | |
barcode_id_input = st.text_input("Barcode ID (applied to all rows, optional)", value="") | |
labware_source_input = st.text_input("Labware for Source (optional, default = 1)", value="1") | |
labware_dest_input = st.text_input("Labware for Destination (optional, default = 1)", value="1") | |
name_input = st.text_input("Name field (optional, default = blank)", value="") | |
if binary32_file: | |
df_32 = pd.read_csv(binary32_file, header=None) | |
df_32.columns = [str(h) for h in mutation_site_headers_actual_3614] | |
else: | |
df_32 = st.data_editor( | |
pd.DataFrame(columns=[str(h) for h in mutation_site_headers_actual_3614]), | |
num_rows="dynamic", | |
key="manual_32_input" | |
) | |
if not df_32.empty: | |
reordered_df_32 = df_32[[str(h) for h in mutation_site_headers_3614 if str(h) in df_32.columns]] | |
st.subheader("Binary Labels (Reordered 4402→3244, 4882→4455)") | |
st.dataframe(reordered_df_32.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral")) | |
st.download_button("Download Reordered CSV", reordered_df_32.to_csv(index=False), "decoded_binary_32_reordered.csv", key="download_csv_tab5_32_reordered") | |
decoded_reordered = binary_labels_to_string(reordered_df_32.values.flatten().astype(int).tolist()) | |
st.subheader("Decoded String (Reordered 4402→3244, 4882→4455)") | |
st.write(decoded_reordered) | |
st.download_button("Download Concatenated Output", decoded_reordered, "decoded_32bit_string_reordered.txt", key="download_txt_tab5_32") | |
df_32_asc = df_32[[str(h) for h in mutation_site_headers_actual_3614 if str(h) in df_32.columns]] | |
st.subheader("Binary Labels (Ascending 3244→4882)") | |
st.dataframe(df_32_asc.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral")) | |
st.download_button("Download Ascending CSV", df_32_asc.to_csv(index=False), "decoded_binary_32_ascending.csv", key="download_csv_tab5_32_ascend") | |
decoded_asc = binary_labels_to_string(df_32_asc.values.flatten().astype(int).tolist()) | |
st.subheader("Decoded String (Flattened 32-bit Ascending)") | |
st.write(decoded_asc) | |
st.download_button("Download Concatenated Output", decoded_asc, "decoded_32bit_string_ascending.txt", key="download_txt_tab5_32_asc") | |
st.subheader("Robot Preparation Script from 32-bit Binary") | |
df_32_robot = df_32.copy() | |
df_32_robot.insert(0, 'Sample', range(1, len(df_32_robot)+1)) | |
df_32_robot['# donors'] = df_32_robot.iloc[:, 1:].astype(int).sum(axis=1) | |
df_32_robot['volume donors (µl)'] = 64 / df_32_robot['# donors'] | |
robot_script_32 = [] | |
source_wells_32 = generate_source_wells(df_32.shape[1]) | |
used_destinations = set() | |
for i, col in enumerate(df_32.columns): | |
for row_idx, sample in df_32_robot.iterrows(): | |
if int(sample[col]) == 1: | |
source = source_wells_32[i] | |
dest = get_well_position(int(sample['Sample'])) | |
used_destinations.add(dest) | |
vol = round(sample['volume donors (µl)'], 2) | |
tool = 'TS_10' if vol < 10 else 'TS_50' | |
robot_script_32.append({ | |
'Source': source, | |
'Destination': dest, | |
'Volume': vol, | |
'Tool': tool | |
}) | |
robot_script_32, source_volumes_32 = track_and_replace_source(source_wells_32, robot_script_32) | |
d_script, d_volumes = generate_fixed_d_source_instructions_to_all_samples(len(df_32_robot)) | |
full_robot_script = robot_script_32 + d_script | |
robot_script_32_df = pd.DataFrame(full_robot_script) | |
robot_script_32_df.insert(0, 'Barcode ID', barcode_id_input) | |
robot_script_32_df.insert(1, 'Labware_Source', labware_source_input) | |
robot_script_32_df.insert(3, 'Labware_Destination', labware_dest_input) | |
robot_script_32_df['Name'] = name_input | |
robot_script_32_df = robot_script_32_df[['Barcode ID', 'Labware_Source', 'Source', 'Labware_Destination', 'Destination', 'Volume', 'Tool', 'Name']] | |
st.dataframe(robot_script_32_df) | |
st.download_button("Download Robot Script (32-bit)", robot_script_32_df.to_csv(index=False), "robot_script_32bit.csv", key="download_robot_32") | |
st.subheader("Total Volume Used Per Source") | |
combined_volumes = {**source_volumes_32, **d_volumes} | |
source_volume_df = pd.DataFrame(list(combined_volumes.items()), columns=['Source', 'Total Volume (µl)']) | |
st.dataframe(source_volume_df) | |
st.download_button("Download Source Volumes", source_volume_df.to_csv(index=False), "source_total_volumes.csv", key="download_volume_32") | |
st.markdown("---") | |
# ========== 31-BIT DECODING ========== | |
st.subheader("31-bit Binary Grouped per Row") | |
st.write("Upload CSV with 31 columns (no headers), each row = one 6-bit ASCII character group or enter manually below.") | |
binary31_file = st.file_uploader("Upload 31-bit Group CSV", type=["csv"], key="binary_31") | |
if binary31_file: | |
df_31 = pd.read_csv(binary31_file, header=None) | |
df_31.columns = [str(h) for h in mutation_site_headers_actual] # assume ascending | |
else: | |
df_31 = st.data_editor( | |
pd.DataFrame(columns=[str(h) for h in mutation_site_headers_actual]), | |
num_rows="dynamic", | |
key="manual_31_input" | |
) | |
if not df_31.empty: | |
reordered_df_31 = df_31[[str(h) for h in mutation_site_headers if str(h) in df_31.columns]] | |
st.subheader("Binary Labels (Reordered 4402→3244, 4882→4455)") | |
st.dataframe(reordered_df_31.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral")) | |
st.download_button("Download Reordered CSV", reordered_df_31.to_csv(index=False), "decoded_binary_31_reordered.csv", key="download_csv_tab5_31_reordered") | |
decoded_flat_reordered = binary_labels_to_string(reordered_df_31.values.flatten().astype(int).tolist()) | |
st.subheader("Decoded String (Flattened 31-bit Reordered)") | |
st.write(decoded_flat_reordered) | |
st.download_button("Download Concatenated Output", decoded_flat_reordered, "decoded_31bit_string_reordered.txt", key="download_csv_tab5_31") | |
df_31_asc = df_31[[str(h) for h in mutation_site_headers_actual if str(h) in df_31.columns]] | |
st.subheader("Binary Labels (Ascending 3244→4882)") | |
st.dataframe(df_31_asc.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral")) | |
st.download_button("Download Ascending CSV", df_31_asc.to_csv(index=False), "decoded_binary_31_ascending.csv", key="download_csv_tab5_31_ascend") | |
decoded_flat_asc = binary_labels_to_string(df_31_asc.values.flatten().astype(int).tolist()) | |
st.subheader("Decoded String (Flattened 31-bit Ascending)") | |
st.write(decoded_flat_asc) | |
st.download_button("Download Concatenated Output", decoded_flat_asc, "decoded_31bit_string_ascending.txt", key="download_csv_tab5_31_asc") | |
# === Robot Preparation Script from 31-bit Binary === | |
st.subheader("Robot Preparation Script from 31-bit Binary") | |
robot_template_31 = pd.read_csv("/home/user/app/Robot2.csv", skiprows=3) | |
robot_template_31.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name'] | |
df_31_robot = df_31.copy() | |
df_31_robot.insert(0, 'Sample', range(1, len(df_31_robot)+1)) | |
df_31_robot['# donors'] = df_31_robot.iloc[:, 1:].astype(int).sum(axis=1) | |
df_31_robot['volume donors (µl)'] = 64 / df_31_robot['# donors'] | |
robot_script_31 = [] | |
source_wells_31 = robot_template_31['Source'].unique().tolist() | |
if len(source_wells_31) < df_31.shape[1]: | |
source_wells_31 += [f"Fake{i}" for i in range(df_31.shape[1] - len(source_wells_31))] | |
source_wells_31 = source_wells_31[:df_31.shape[1]] | |
for i, col in enumerate(df_31.columns): | |
for row_idx, sample in df_31_robot.iterrows(): | |
if int(sample[col]) == 1: | |
source = source_wells_31[i] | |
dest = get_well_position(int(sample['Sample'])) | |
vol = round(sample['volume donors (µl)'], 2) | |
robot_script_31.append({'Source': source, 'Destination': dest, 'Volume': vol}) | |
robot_script_31_df = pd.DataFrame(robot_script_31) | |
st.dataframe(robot_script_31_df) | |
st.download_button("Download Robot Script (31-bit)", robot_script_31_df.to_csv(index=False), "robot_script_31bit.csv", key="download_robot_31") | |