Spaces:
Sleeping
Sleeping
File size: 29,552 Bytes
0f8ddfb 126fff1 e59d9f1 785d3cd 098acd8 785d3cd 41b3afa 785d3cd 8e18767 17836b2 8e18767 098acd8 17836b2 8e18767 223c1c6 54f693c 0f8ddfb cc35c28 8ba360a cc35c28 0f8ddfb 17836b2 0f8ddfb cc35c28 0f8ddfb ff2b00a cc35c28 ff2b00a 223c1c6 181eb38 54f693c 81f62ec 0f8ddfb af02fd2 126fff1 54f693c 126fff1 d34499f 126fff1 25c8ed3 126fff1 e36ad7a 126fff1 55b708c 54f693c 126fff1 1e12d5e 54f693c 1e12d5e 54f693c 07a5d20 05bc090 bce28b1 1e12d5e 223c1c6 02b7814 105cb3c 83f3047 223c1c6 785d3cd bce28b1 785d3cd 1f5b7cf 84c642e 1f5b7cf a1a3469 1f5b7cf 12bbf65 1f5b7cf bce28b1 1f5b7cf 7f5607e e36ad7a 7f5607e e36ad7a 7f5607e 0096c5b 7f5607e e36ad7a 7f5607e e36ad7a 7f5607e e36ad7a 7f5607e e36ad7a 223c1c6 33573cd 54f693c 223c1c6 54f693c 785d3cd f37dc6c 5dc1952 223c1c6 f37dc6c 223c1c6 f37dc6c c7df11e 54f693c 223c1c6 785d3cd 223c1c6 785d3cd 54f693c 785d3cd 17836b2 54f693c 6a96058 785d3cd 54f693c bce28b1 785d3cd 4f6586f 223c1c6 08696fc bce28b1 a33de8f fc0d4a5 6768117 fc0d4a5 d34499f 610e01f fc0d4a5 610e01f fc0d4a5 bce28b1 fc0d4a5 bce28b1 fc0d4a5 bce28b1 fc0d4a5 bce28b1 fc0d4a5 5217706 fc0d4a5 5217706 fc0d4a5 c7df11e fc0d4a5 bce28b1 fc0d4a5 bce28b1 fc0d4a5 2ecb0b1 af02fd2 d61a1be 9e336e0 af02fd2 2dd1657 a047ed7 5e9dfa6 9df6cf9 fae5c44 9df6cf9 fae5c44 2dd1657 9e336e0 d4ed224 9df6cf9 a047ed7 9df6cf9 a047ed7 d61a1be a047ed7 d4ed224 a047ed7 d4ed224 a047ed7 d4ed224 a047ed7 d4ed224 a047ed7 d4ed224 af02fd2 24d0735 9df6cf9 d4ed224 24d0735 2dd1657 24d0735 9df6cf9 24d0735 9df6cf9 2dd1657 24d0735 2dd1657 24d0735 2dd1657 9e336e0 af02fd2 a047ed7 5e9dfa6 9df6cf9 9e336e0 a047ed7 7795a77 9e336e0 a047ed7 7795a77 fae5c44 9df6cf9 a047ed7 7215e2a a047ed7 d61a1be 9e336e0 a047ed7 af02fd2 d61a1be 2845316 9df6cf9 f13a4e9 097c2ed f13a4e9 9df6cf9 ac02c2f f13a4e9 9df6cf9 f13a4e9 2ecb0b1 f13a4e9 9df6cf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
import streamlit as st
import numpy as np
import pandas as pd
# Mutation site headers removed 3614,
mutation_site_headers_actual = [
3244, 3297, 3350, 3399, 3455, 3509, 3562,
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
# Thresholds for each mutation site removed 3614: 0.091557752,
thresholds_actual = pd.Series({
3244: 1.096910677, 3297: 0.923658795, 3350: 0.668939037, 3399: 0.914305214,
3455: 1.297392984, 3509: 1.812636208, 3562: 1.185047484,
3665: 0.298007308, 3720: 0.58857544, 3773: 0.882561082, 3824: 1.149082617,
3879: 0.816050702, 3933: 2.936517653, 3985: 1.597166791, 4039: 0.962108082,
4089: 1.479783497, 4145: 0.305853225, 4190: 1.311869541, 4245: 1.707556905,
4298: 0.875013076, 4349: 1.227704526, 4402: 0.593206446, 4455: 1.179633137,
4510: 1.272477799, 4561: 1.293841573, 4615: 1.16821885, 4668: 1.40306,
4720: 0.706530878, 4773: 1.483114072, 4828: 0.954939873, 4882: 1.47524328
})
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
mutation_site_headers = [
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039,
3985, 3933, 3879, 3824, 3773, 3720, 3665,
3562, 3509, 3455, 3399, 3350, 3297, 3244, # 1β23
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455 # 24β32
]
# Thresholds reordered accordingly
thresholds = pd.Series({h: thresholds_actual[h] for h in mutation_site_headers})
# === Utility functions ===
# Voyager ASCII 6-bit conversion table
voyager_table = {
i: ch for i, ch in enumerate([
' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2',
'3', '4', '5', '6', '7', '8', '9', '.', ',', '(',
')','+', '-', '*', '/', '=', '$', '!', ':', '%',
'"', '#', '@', "'", '?', '&'
])
}
reverse_voyager_table = {v: k for k, v in voyager_table.items()}
def string_to_binary_labels(s: str) -> list[int]:
bits = []
for char in s:
val = reverse_voyager_table.get(char.upper(), 0)
char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)]
bits.extend(char_bits)
return bits
def binary_labels_to_string(bits: list[int]) -> str:
chars = []
for i in range(0, len(bits), 6):
chunk = bits[i:i+6]
if len(chunk) < 6:
chunk += [0] * (6 - len(chunk))
val = sum(b << (5 - j) for j, b in enumerate(chunk))
chars.append(voyager_table.get(val, '?'))
return ''.join(chars)
# === Streamlit App ===
st.title("ASCII & Binary Label Converter")
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Text to Binary Labels (31)", "EF β Binary β String (31)", "Text to Binary Labels (32)", "EF β Binary (32)", "Binary β String"])
# Tab 1: Text to Binary
with tab1:
user_input = st.text_input("Enter text", value="DNA", key="input_text_31")
if user_input:
ascii_codes = [reverse_voyager_table.get(c.upper(), 0) for c in user_input]
binary_labels = string_to_binary_labels(user_input)
# st.subheader("Voyager ASCII Codes")
# st.write(ascii_codes)
st.subheader("Binary Labels per Character")
grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
for i, bits in enumerate(grouped):
st.write(f"'{user_input[i]}' β {bits}")
st.subheader("Binary Labels (31-bit groups)")
groups = []
for i in range(0, len(binary_labels), 31):
group = binary_labels[i:i+31]
group += [0] * (31 - len(group))
groups.append(group + [sum(group)])
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.download_button("Download as CSV", df.to_csv(index=False), "text_31_binary_labels.csv", key="download_csv_tab1_31csv")
ascending_headers = sorted(mutation_site_headers_actual)
df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]].copy()
if "3614" not in df_sorted.columns:
idx = df_sorted.columns.get_loc("3562") + 1 # Insert after 3562
df_sorted.insert(idx, "3614", 0)
st.subheader("Binary Labels (Ascending Order 3244 β 4882)")
st.dataframe(df_sorted)
st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv", key="download_csv_tab1_ascend")
# === Robot Preparation Script Generation ===
st.subheader("Robot Preparation Script")
robot_template = pd.read_csv("/home/user/app/Robot.csv", skiprows=3)
robot_template.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name']
# Add Sample numbers for well referencing
df_sorted.insert(0, 'Sample', range(1, len(df_sorted)+1))
# Step 1: Count the number of edited sites per row
df_sorted['# donors'] = df_sorted.iloc[:, 1:].sum(axis=1)
# Step 2: Calculate volume per donor (32 / # donors)
df_sorted['volume donors (Β΅l)'] = 32 / df_sorted['# donors']
# Step 3: Generate the robot script
robot_script = []
source_wells = robot_template['Source'].unique().tolist()
if len(source_wells) < 32:
source_wells += [f"Fake{i}" for i in range(32 - len(source_wells))]
source_wells = source_wells[:32]
st.write(f"Number of source wells: {len(source_wells)}")
st.write(f"Number of binary columns: {len(df_sorted.columns[1:33])}")
for i, col in enumerate(df_sorted.columns[1:33]):
for row_idx, sample in df_sorted.iterrows():
if sample[col] == 1:
source = source_wells[i]
dest = f"A{sample['Sample']}"
vol = round(sample['volume donors (Β΅l)'], 2)
robot_script.append({'Source': source, 'Destination': dest, 'Volume': vol})
robot_script_df = pd.DataFrame(robot_script)
st.dataframe(robot_script_df)
st.download_button("Download Robot Script CSV", robot_script_df.to_csv(index=False), "robot_script.csv", key="download_csv_tab1_robot")
# === Robot Preparation Script (Custom Order: 4402 β 3244, 4882 β 4455) ===
st.subheader("Robot Preparation Script (Custom Order: 4402 β 3244, 4882 β 4455)")
# Include 3614 in custom header list
custom_headers = [
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039,
3985, 3933, 3879, 3824, 3773, 3720, 3665, 3614,
3562, 3509, 3455, 3399, 3350, 3297, 3244,
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455
]
# Create a copy of df and reorder columns based on custom headers
df_sorted_custom = df[[str(h) for h in custom_headers if str(h) in df.columns]].copy()
# Insert fake column "3614" if missing
if "3614" not in df_sorted_custom.columns:
idx = custom_headers.index(3614)
insert_at = idx # 0-based index
df_sorted_custom.insert(insert_at, "3614", 0)
# Insert 'Sample' if missing
if "Sample" not in df_sorted_custom.columns:
df_sorted_custom.insert(0, 'Sample', range(1, len(df_sorted_custom) + 1))
# Calculate donor info
df_sorted_custom['# donors'] = df_sorted_custom.iloc[:, 1:].sum(axis=1)
df_sorted_custom['volume donors (Β΅l)'] = 32 / df_sorted_custom['# donors']
# Generate robot script
robot_script_custom = []
for i, col in enumerate(df_sorted_custom.columns[1:33]): # 32 columns after Sample
for row_idx, sample in df_sorted_custom.iterrows():
if sample[col] == 1:
source = source_wells[i]
dest = f"A{sample['Sample']}"
vol = round(sample['volume donors (Β΅l)'], 2)
robot_script_custom.append({'Source': source, 'Destination': dest, 'Volume': vol})
robot_script_custom_df = pd.DataFrame(robot_script_custom)
st.dataframe(robot_script_custom_df)
st.download_button("Download Custom Order Robot Script CSV", robot_script_custom_df.to_csv(index=False), "robot_script_custom_order.csv", key="download_csv_tab1_robot_custom")
# Tab 2: EF β Binary
with tab2:
st.write("Upload an Editing Frequency CSV or enter manually:")
st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.")
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
if ef_file:
ef_df = pd.read_csv(ef_file, header=None)
ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual)]
else:
ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual)])
edited_df = st.data_editor(ef_df, num_rows="dynamic")
if st.button("Convert to Binary Labels", key="convert_button_tab2"):
binary_part = pd.DataFrame()
for col in sorted(mutation_site_headers_actual):
col_str = str(col)
threshold = thresholds_actual[col]
binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int)
binary_reordered = binary_part[[str(h) for h in mutation_site_headers if str(h) in binary_part.columns]]
def color_binary(val):
if val == 1: return "background-color: lightgreen"
if val == 0: return "background-color: lightcoral"
return ""
st.subheader("Binary Labels (Reordered 4402β3244, 4882β4455)")
styled = binary_reordered.style.applymap(color_binary)
st.dataframe(styled)
st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv", key="download_csv_tab2_csv")
all_bits = binary_reordered.values.flatten().tolist()
decoded_string = binary_labels_to_string(all_bits)
st.subheader("Decoded String (continuous across rows)")
st.write(decoded_string)
st.subheader("Binary Labels (Ascending 3244β4882)")
st.dataframe(binary_part.style.applymap(color_binary))
st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv", key="download_csv_tab2_ascend")
all_bits = binary_part.values.flatten().tolist()
decoded_string = binary_labels_to_string(all_bits)
st.subheader("Decoded String (continuous across rows)")
st.write(decoded_string)
# Mutation site headers did not remove 3614,
mutation_site_headers_actual_3614 = [
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
# Thresholds for each mutation site removed 3614: 0.091557752,
thresholds_actual_3614 = pd.Series({
3244: 1.096910677, 3297: 0.923658795, 3350: 0.668939037, 3399: 0.914305214,
3455: 1.297392984, 3509: 1.812636208, 3562: 1.185047484, 3614: 0.157969131375,
3665: 0.298007308, 3720: 0.58857544, 3773: 0.882561082, 3824: 1.149082617,
3879: 0.816050702, 3933: 2.936517653, 3985: 1.597166791, 4039: 0.962108082,
4089: 1.479783497, 4145: 0.305853225, 4190: 1.311869541, 4245: 1.707556905,
4298: 0.875013076, 4349: 1.227704526, 4402: 0.593206446, 4455: 1.179633137,
4510: 1.272477799, 4561: 1.293841573, 4615: 1.16821885, 4668: 1.40306,
4720: 0.706530878, 4773: 1.483114072, 4828: 0.954939873, 4882: 1.47524328
})
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
mutation_site_headers_3614 = [
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039,
3985, 3933, 3879, 3824, 3773, 3720, 3665, 3614,
3562, 3509, 3455, 3399, 3350, 3297, 3244, # 1β23
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455 # 24β32
]
# Thresholds reordered accordingly
thresholds_3614 = pd.Series({h: thresholds_actual_3614[h] for h in mutation_site_headers_3614})
# === Utility functions ===
reverse_voyager_table = {v: k for k, v in voyager_table.items()}
# Tab 3: Text to Binary (32)
with tab3:
user_input_32 = st.text_input("Enter text", value="DNA", key="input_text_32")
if user_input_32:
ascii_codes = [ord(c) for c in user_input_32]
binary_labels = string_to_binary_labels(user_input_32)
st.subheader("ASCII Codes")
st.write(ascii_codes)
st.subheader("Binary Labels per Character")
grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
for i, bits in enumerate(grouped):
st.write(f"'{user_input_32[i]}' β {bits}")
st.subheader("Binary Labels (32-bit groups)")
groups = []
for i in range(0, len(binary_labels), 32):
group = binary_labels[i:i+32]
group += [0] * (32 - len(group))
groups.append(group + [sum(group)])
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers_3614] + ["Edited Sites"])
st.dataframe(df)
st.download_button("Download as CSV", df.to_csv(index=False), "text_32_binary_labels.csv", key="download_csv_tab3_csv")
ascending_headers = sorted(mutation_site_headers_actual_3614)
df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]]
st.subheader("Binary Labels (Ascending Order 3244 β 4882)")
st.dataframe(df_sorted)
st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv", key="download_csv_tab3_ascend")
# === Robot Preparation Script Generation ===
st.subheader("Robot Preparation Script")
robot_template = pd.read_csv("/home/user/app/Robot.csv", skiprows=3)
robot_template.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name']
# Add Sample numbers for well referencing
df_sorted.insert(0, 'Sample', range(1, len(df_sorted)+1))
# Step 1: Count the number of edited sites per row
df_sorted['# donors'] = df_sorted.iloc[:, 1:].sum(axis=1)
# Step 2: Calculate volume per donor (32 / # donors)
df_sorted['volume donors (Β΅l)'] = 32 / df_sorted['# donors']
# Step 3: Generate the robot script
robot_script = []
source_wells = robot_template['Source'].unique().tolist()[:32]
for i, col in enumerate(df_sorted.columns[1:33]):
for row_idx, sample in df_sorted.iterrows():
if sample[col] == 1:
source = source_wells[i]
dest = f"A{sample['Sample']}"
vol = round(sample['volume donors (Β΅l)'], 2)
robot_script.append({'Source': source, 'Destination': dest, 'Volume': vol})
robot_script_df = pd.DataFrame(robot_script)
st.dataframe(robot_script_df)
st.download_button("Download Robot Script CSV", robot_script_df.to_csv(index=False), "robot_script.csv", key="download_csv_tab3_robot")
# Tab 4: EF β Binary (32)
with tab4:
st.write("Upload an Editing Frequency CSV or enter manually:")
st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.")
ef_file_2 = st.file_uploader("Upload EF CSV", type=["csv"], key="ef2")
if ef_file_2:
ef_df = pd.read_csv(ef_file_2, header=None)
ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual_3614)]
else:
ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual_3614)])
edited_df = st.data_editor(ef_df, num_rows="dynamic")
if st.button("Convert to Binary Labels", key="convert_button_tab4"):
binary_part = pd.DataFrame()
for col in sorted(mutation_site_headers_actual_3614):
col_str = str(col)
threshold = thresholds_actual_3614[col]
binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int)
binary_reordered = binary_part[[str(h) for h in mutation_site_headers_3614 if str(h) in binary_part.columns]]
def color_binary(val):
if val == 1: return "background-color: lightgreen"
if val == 0: return "background-color: lightcoral"
return ""
st.subheader("Binary Labels (Reordered 4402β3244, 4882β4455)")
styled = binary_reordered.style.applymap(color_binary)
st.dataframe(styled)
st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv", key="download_csv_tab4_csv")
all_bits = binary_reordered.values.flatten().tolist()
decoded_string = binary_labels_to_string(all_bits)
st.subheader("Decoded String (continuous across rows)")
st.write(decoded_string)
st.subheader("Binary Labels (Ascending 3244β4882)")
st.dataframe(binary_part.style.applymap(color_binary))
st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv", key="download_csv_tab4_ascend")
all_bits = binary_part.values.flatten().tolist()
decoded_string = binary_labels_to_string(all_bits)
st.subheader("Decoded String (continuous across rows)")
st.write(decoded_string)
def get_well_position(sample_index):
"""
Convert sample index (1-based) into well position (e.g., A1, A2, ..., B1, B2, ..., etc.)
"""
row_letter = chr(65 + (sample_index - 1) // 12) # 65 = 'A'
col_number = ((sample_index - 1) % 12) + 1
return f"{row_letter}{col_number}"
# Tab 5: Binary β String
with tab5:
st.header("Decode Binary Labels to String")
# Utility: Track source volumes and update if exceeds limit
def track_and_replace_source(source_list, robot_script, volume_limit=170):
source_volumes = {}
adjusted_sources = []
for entry in robot_script:
src = entry['Source']
vol = entry['Volume']
if src not in source_volumes:
source_volumes[src] = 0
source_volumes[src] += vol
if source_volumes[src] > volume_limit:
row_letter = src[0]
col_number = src[1:]
new_row_letter = chr(ord(row_letter) + 4)
new_src = f"{new_row_letter}{col_number}"
entry['Source'] = new_src
if new_src not in source_volumes:
source_volumes[new_src] = 0
source_volumes[new_src] += vol
source_volumes[src] -= vol
adjusted_sources.append(entry)
return adjusted_sources, source_volumes
# Utility: Generate fixed-volume D source to all sample wells
def generate_fixed_d_source_instructions_to_all_samples(n_samples, fixed_volume=16, volume_limit=170):
d_source_volumes = {}
d_source_script = []
current_d_index = 1
for i in range(n_samples):
dest = get_well_position(i + 1)
current_d_well = f"D{current_d_index}"
if current_d_well not in d_source_volumes:
d_source_volumes[current_d_well] = 0
if d_source_volumes[current_d_well] + fixed_volume > volume_limit:
current_d_index += 1
current_d_well = f"D{current_d_index}"
d_source_volumes[current_d_well] = 0
d_source_volumes[current_d_well] += fixed_volume
tool = 'TS_10' if fixed_volume < 10 else 'TS_50'
d_source_script.append({
'Source': current_d_well,
'Destination': dest,
'Volume': fixed_volume,
'Tool': tool
})
return d_source_script, d_source_volumes
def generate_source_wells(n):
wells = []
rows = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for i in range(n):
row = rows[i // 12] # cycle through A, B, C...
col = (i % 12) + 1 # 1 to 12
wells.append(f"{row}{col}")
return wells
# ========== 32-BIT DECODING ==========
st.subheader("32-bit Binary per Row")
st.write("Upload CSV with 32 columns (0 or 1), no headers, from EF Binary format or enter manually below.")
binary32_file = st.file_uploader("Upload 32-bit Binary CSV", type=["csv"], key="binary_32")
st.subheader("Optional Metadata (Optional)")
barcode_id_input = st.text_input("Barcode ID (applied to all rows, optional)", value="")
labware_source_input = st.text_input("Labware for Source (optional, default = 1)", value="1")
labware_dest_input = st.text_input("Labware for Destination (optional, default = 1)", value="1")
name_input = st.text_input("Name field (optional, default = blank)", value="")
if binary32_file:
df_32 = pd.read_csv(binary32_file, header=None)
df_32.columns = [str(h) for h in mutation_site_headers_actual_3614]
else:
df_32 = st.data_editor(
pd.DataFrame(columns=[str(h) for h in mutation_site_headers_actual_3614]),
num_rows="dynamic",
key="manual_32_input"
)
if not df_32.empty:
reordered_df_32 = df_32[[str(h) for h in mutation_site_headers_3614 if str(h) in df_32.columns]]
st.subheader("Binary Labels (Reordered 4402β3244, 4882β4455)")
st.dataframe(reordered_df_32.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral"))
st.download_button("Download Reordered CSV", reordered_df_32.to_csv(index=False), "decoded_binary_32_reordered.csv", key="download_csv_tab5_32_reordered")
decoded_reordered = binary_labels_to_string(reordered_df_32.values.flatten().astype(int).tolist())
st.subheader("Decoded String (Reordered 4402β3244, 4882β4455)")
st.write(decoded_reordered)
st.download_button("Download Concatenated Output", decoded_reordered, "decoded_32bit_string_reordered.txt", key="download_txt_tab5_32")
df_32_asc = df_32[[str(h) for h in mutation_site_headers_actual_3614 if str(h) in df_32.columns]]
st.subheader("Binary Labels (Ascending 3244β4882)")
st.dataframe(df_32_asc.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral"))
st.download_button("Download Ascending CSV", df_32_asc.to_csv(index=False), "decoded_binary_32_ascending.csv", key="download_csv_tab5_32_ascend")
decoded_asc = binary_labels_to_string(df_32_asc.values.flatten().astype(int).tolist())
st.subheader("Decoded String (Flattened 32-bit Ascending)")
st.write(decoded_asc)
st.download_button("Download Concatenated Output", decoded_asc, "decoded_32bit_string_ascending.txt", key="download_txt_tab5_32_asc")
st.subheader("Robot Preparation Script from 32-bit Binary")
df_32_robot = df_32.copy()
df_32_robot.insert(0, 'Sample', range(1, len(df_32_robot)+1))
df_32_robot['# donors'] = df_32_robot.iloc[:, 1:].astype(int).sum(axis=1)
df_32_robot['volume donors (Β΅l)'] = 64 / df_32_robot['# donors']
robot_script_32 = []
source_wells_32 = generate_source_wells(df_32.shape[1])
used_destinations = set()
for i, col in enumerate(df_32.columns):
for row_idx, sample in df_32_robot.iterrows():
if int(sample[col]) == 1:
source = source_wells_32[i]
dest = get_well_position(int(sample['Sample']))
used_destinations.add(dest)
vol = round(sample['volume donors (Β΅l)'], 2)
tool = 'TS_10' if vol < 10 else 'TS_50'
robot_script_32.append({
'Source': source,
'Destination': dest,
'Volume': vol,
'Tool': tool
})
robot_script_32, source_volumes_32 = track_and_replace_source(source_wells_32, robot_script_32)
d_script, d_volumes = generate_fixed_d_source_instructions_to_all_samples(len(df_32_robot))
full_robot_script = robot_script_32 + d_script
robot_script_32_df = pd.DataFrame(full_robot_script)
robot_script_32_df.insert(0, 'Barcode ID', barcode_id_input)
robot_script_32_df.insert(1, 'Labware_Source', labware_source_input)
robot_script_32_df.insert(3, 'Labware_Destination', labware_dest_input)
robot_script_32_df['Name'] = name_input
robot_script_32_df = robot_script_32_df[['Barcode ID', 'Labware_Source', 'Source', 'Labware_Destination', 'Destination', 'Volume', 'Tool', 'Name']]
st.dataframe(robot_script_32_df)
st.download_button("Download Robot Script (32-bit)", robot_script_32_df.to_csv(index=False), "robot_script_32bit.csv", key="download_robot_32")
st.subheader("Total Volume Used Per Source")
combined_volumes = {**source_volumes_32, **d_volumes}
source_volume_df = pd.DataFrame(list(combined_volumes.items()), columns=['Source', 'Total Volume (Β΅l)'])
st.dataframe(source_volume_df)
st.download_button("Download Source Volumes", source_volume_df.to_csv(index=False), "source_total_volumes.csv", key="download_volume_32")
st.markdown("---")
# ========== 31-BIT DECODING ==========
st.subheader("31-bit Binary Grouped per Row")
st.write("Upload CSV with 31 columns (no headers), each row = one 6-bit ASCII character group or enter manually below.")
binary31_file = st.file_uploader("Upload 31-bit Group CSV", type=["csv"], key="binary_31")
if binary31_file:
df_31 = pd.read_csv(binary31_file, header=None)
df_31.columns = [str(h) for h in mutation_site_headers_actual] # assume ascending
else:
df_31 = st.data_editor(
pd.DataFrame(columns=[str(h) for h in mutation_site_headers_actual]),
num_rows="dynamic",
key="manual_31_input"
)
if not df_31.empty:
reordered_df_31 = df_31[[str(h) for h in mutation_site_headers if str(h) in df_31.columns]]
st.subheader("Binary Labels (Reordered 4402β3244, 4882β4455)")
st.dataframe(reordered_df_31.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral"))
st.download_button("Download Reordered CSV", reordered_df_31.to_csv(index=False), "decoded_binary_31_reordered.csv", key="download_csv_tab5_31_reordered")
decoded_flat_reordered = binary_labels_to_string(reordered_df_31.values.flatten().astype(int).tolist())
st.subheader("Decoded String (Flattened 31-bit Reordered)")
st.write(decoded_flat_reordered)
st.download_button("Download Concatenated Output", decoded_flat_reordered, "decoded_31bit_string_reordered.txt", key="download_csv_tab5_31")
df_31_asc = df_31[[str(h) for h in mutation_site_headers_actual if str(h) in df_31.columns]]
st.subheader("Binary Labels (Ascending 3244β4882)")
st.dataframe(df_31_asc.style.applymap(lambda v: "background-color: lightgreen" if v == 1 else "background-color: lightcoral"))
st.download_button("Download Ascending CSV", df_31_asc.to_csv(index=False), "decoded_binary_31_ascending.csv", key="download_csv_tab5_31_ascend")
decoded_flat_asc = binary_labels_to_string(df_31_asc.values.flatten().astype(int).tolist())
st.subheader("Decoded String (Flattened 31-bit Ascending)")
st.write(decoded_flat_asc)
st.download_button("Download Concatenated Output", decoded_flat_asc, "decoded_31bit_string_ascending.txt", key="download_csv_tab5_31_asc")
# === Robot Preparation Script from 31-bit Binary ===
st.subheader("Robot Preparation Script from 31-bit Binary")
robot_template_31 = pd.read_csv("/home/user/app/Robot2.csv", skiprows=3)
robot_template_31.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name']
df_31_robot = df_31.copy()
df_31_robot.insert(0, 'Sample', range(1, len(df_31_robot)+1))
df_31_robot['# donors'] = df_31_robot.iloc[:, 1:].astype(int).sum(axis=1)
df_31_robot['volume donors (Β΅l)'] = 64 / df_31_robot['# donors']
robot_script_31 = []
source_wells_31 = robot_template_31['Source'].unique().tolist()
if len(source_wells_31) < df_31.shape[1]:
source_wells_31 += [f"Fake{i}" for i in range(df_31.shape[1] - len(source_wells_31))]
source_wells_31 = source_wells_31[:df_31.shape[1]]
for i, col in enumerate(df_31.columns):
for row_idx, sample in df_31_robot.iterrows():
if int(sample[col]) == 1:
source = source_wells_31[i]
dest = get_well_position(int(sample['Sample']))
vol = round(sample['volume donors (Β΅l)'], 2)
robot_script_31.append({'Source': source, 'Destination': dest, 'Volume': vol})
robot_script_31_df = pd.DataFrame(robot_script_31)
st.dataframe(robot_script_31_df)
st.download_button("Download Robot Script (31-bit)", robot_script_31_df.to_csv(index=False), "robot_script_31bit.csv", key="download_robot_31")
|