Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import pandas as pd | |
# Simple app: convert user input into ASCII codes and binary labels | |
def string_to_binary_labels(s: str) -> list[int]: | |
bits: list[int] = [] | |
for char in s: | |
ascii_code = ord(char) | |
char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)] | |
bits.extend(char_bits) | |
return bits | |
def image_to_binary_labels(img: Image.Image, max_pixels: int = 256) -> list[int]: | |
img = img.convert("RGB") | |
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels)))) | |
img_array = np.array(img) | |
flat = img_array.flatten() | |
binarized = [(pixel >> bit) & 1 for pixel in flat for bit in range(7, -1, -1)] | |
return binarized | |
def binary_labels_to_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image: | |
total_pixels = len(binary_labels) | |
if width is None or height is None: | |
side = int(np.ceil(np.sqrt(total_pixels))) | |
width = height = side | |
needed_pixels = width * height | |
if total_pixels < needed_pixels: | |
binary_labels += [0] * (needed_pixels - total_pixels) | |
array = np.array(binary_labels, dtype=np.uint8) * 255 | |
image_array = array.reshape((height, width)) | |
img = Image.fromarray(image_array, mode='L') | |
return img | |
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image: | |
total_pixels = len(binary_labels) // 24 | |
if width is None or height is None: | |
side = int(np.ceil(np.sqrt(total_pixels))) | |
width = height = side | |
needed_pixels = width * height | |
needed_bits = needed_pixels * 24 | |
if len(binary_labels) < needed_bits: | |
binary_labels += [0] * (needed_bits - len(binary_labels)) | |
pixels = [] | |
for i in range(0, needed_bits, 24): | |
r_bits = binary_labels[i:i+8] | |
g_bits = binary_labels[i+8:i+16] | |
b_bits = binary_labels[i+16:i+24] | |
r = sum(b << (7-j) for j, b in enumerate(r_bits)) | |
g = sum(b << (7-j) for j, b in enumerate(g_bits)) | |
b = sum(b << (7-j) for j, b in enumerate(b_bits)) | |
pixels.append((r, g, b)) | |
array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3)) | |
img = Image.fromarray(array, mode='RGB') | |
return img | |
mutation_site_headers = [ | |
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614, | |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039, | |
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455, | |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882 | |
] | |
st.title("ASCII & Binary Label Converter") | |
tab1, tab2 = st.tabs(["Text to Binary Labels", "Image to Binary Labels"]) | |
with tab1: | |
st.write("Enter text to see its ASCII codes and corresponding binary labels:") | |
user_input = st.text_input("Text Input", value="DNA") | |
if user_input: | |
ascii_codes = [ord(c) for c in user_input] | |
binary_labels = string_to_binary_labels(user_input) | |
st.subheader("ASCII Codes") | |
st.write(ascii_codes) | |
st.subheader("Binary Labels per Character") | |
grouped_chars = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)] | |
for idx, bits in enumerate(grouped_chars): | |
st.write(f"'{user_input[idx]}' → {bits}") | |
st.subheader("Binary Labels (32-bit groups)") | |
num_groups = (len(binary_labels) + 31) // 32 | |
table_data = [] | |
for grp_idx in range(num_groups): | |
start = grp_idx * 32 | |
end = start + 32 | |
group = binary_labels[start:end] | |
if len(group) < 32: | |
group += [0] * (32 - len(group)) | |
edited_sites = sum(group) | |
row = group + [edited_sites] | |
table_data.append(row) | |
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.download_button( | |
label="Download Binary Labels as CSV", | |
data=','.join(str(b) for b in binary_labels), | |
file_name="binary_labels.csv", | |
mime="text/csv" | |
) | |
with tab2: | |
st.write("Upload an image (JPG or PNG) to convert it into binary labels:") | |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
img = Image.open(uploaded_file) | |
st.image(img, caption="Uploaded Image", use_column_width=True) | |
max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=2056, value=1024, step=32) | |
binary_labels = image_to_binary_labels(img, max_pixels=max_pixels) | |
st.subheader("Binary Labels from Image") | |
num_groups = (len(binary_labels) + 31) // 32 | |
table_data = [] | |
for grp_idx in range(num_groups): | |
start = grp_idx * 32 | |
end = start + 32 | |
group = binary_labels[start:end] | |
if len(group) < 32: | |
group += [0] * (32 - len(group)) | |
edited_sites = sum(group) | |
row = group + [edited_sites] | |
table_data.append(row) | |
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.download_button( | |
label="Download Image Binary Labels as CSV", | |
data=','.join(str(b) for b in binary_labels), | |
file_name="image_binary_labels.csv", | |
mime="text/csv" | |
) | |
st.subheader("Reconstruct Image from Binary Labels") | |
option = st.radio("Choose Reconstruction Mode", ["Grayscale", "True Color (RGB)"]) | |
if st.button("Reconstruct Image"): | |
if option == "Grayscale": | |
reconstructed_img = binary_labels_to_image(binary_labels) | |
else: | |
reconstructed_img = binary_labels_to_rgb_image(binary_labels) | |
st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True) | |
# Future: integrate DNA editor mapping for each mutation site here |