Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from transformers import ( | |
| WhisperForConditionalGeneration, | |
| WhisperProcessor, | |
| pipeline, | |
| ) | |
| import os | |
| MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = WhisperForConditionalGeneration.from_pretrained("whispy/whisper_italian").to(device) | |
| processor = WhisperProcessor.from_pretrained("whispy/whisper_italian") | |
| pipe = pipeline(model="whispy/whisper_italian") | |
| diffuser_pipeline = DiffusionPipeline.from_pretrained( | |
| "CompVis/stable-diffusion-v1-4", | |
| custom_pipeline="speech_to_image_diffusion", | |
| speech_model="whispy/whisper_italian", | |
| speech_processor=processor, | |
| use_auth_token=MY_SECRET_TOKEN, | |
| revision="fp16", | |
| torch_dtype=torch.float16, | |
| ) | |
| diffuser_pipeline.enable_attention_slicing() | |
| diffuser_pipeline = diffuser_pipeline.to(device) | |
| def transcribe(audio): | |
| text = pipe(audio)["text"] | |
| return text | |
| #ββββββββββββββββββββββββββββββββββββββββββββ | |
| # GRADIO SETUP | |
| title = "Speech to Diffusion β’ Community Pipeline" | |
| description = """ | |
| <p style='text-align: center;'>This demo can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.<br /> | |
| Community examples consist of both inference and training examples that have been added by the community.<br /> | |
| <a href='https://github.com/huggingface/diffusers/tree/main/examples/community#speech-to-image' target='_blank'> Click here for more information about community pipelines </a> | |
| </p> | |
| """ | |
| article = """ | |
| <p style='text-align: center;'>Community pipeline by Mikail Duzenli β’ Gradio demo by Sylvain Filoni & Ahsen Khaliq<p> | |
| """ | |
| audio_input = gr.Audio(source="microphone", type="filepath") | |
| image_output = gr.Image() | |
| def speech_to_text(audio_sample): | |
| #process_audio = whisper.load_audio(audio_sample) | |
| process_audio = transcribe(audio_sample) | |
| output = diffuser_pipeline(process_audio) | |
| print(f""" | |
| ββββββββ | |
| output: {output} | |
| ββββββββ | |
| """) | |
| return output.images[0] | |
| demo = gr.Interface(fn=speech_to_text, inputs=audio_input, outputs=image_output, title=title, description=description, article=article) | |
| demo.launch() |