|
""" |
|
Process and transform GuardBench leaderboard data. |
|
""" |
|
|
|
import json |
|
import os |
|
import pandas as pd |
|
from datetime import datetime |
|
from typing import Dict, List, Any, Tuple |
|
|
|
from src.display.utils import CATEGORIES, TEST_TYPES, METRICS |
|
|
|
|
|
def load_leaderboard_data(file_path: str) -> Dict: |
|
""" |
|
Load the leaderboard data from a JSON file. |
|
""" |
|
if not os.path.exists(file_path): |
|
version = "v0" |
|
if "_v" in file_path: |
|
version = file_path.split("_")[-1].split(".")[0] |
|
return {"entries": [], "last_updated": datetime.now().isoformat(), "version": version} |
|
|
|
with open(file_path, 'r') as f: |
|
data = json.load(f) |
|
|
|
|
|
if "version" not in data: |
|
version = "v0" |
|
if "_v" in file_path: |
|
version = file_path.split("_")[-1].split(".")[0] |
|
data["version"] = version |
|
|
|
return data |
|
|
|
|
|
def save_leaderboard_data(data: Dict, file_path: str) -> None: |
|
""" |
|
Save the leaderboard data to a JSON file. |
|
""" |
|
|
|
os.makedirs(os.path.dirname(file_path), exist_ok=True) |
|
|
|
|
|
data["last_updated"] = datetime.now().isoformat() |
|
|
|
|
|
if "version" not in data: |
|
version = "v0" |
|
if "_v" in file_path: |
|
version = file_path.split("_")[-1].split(".")[0] |
|
data["version"] = version |
|
|
|
with open(file_path, 'w') as f: |
|
json.dump(data, f, indent=2) |
|
|
|
|
|
def process_submission(submission_data: List[Dict]) -> List[Dict]: |
|
""" |
|
Process submission data and convert it to leaderboard entries. |
|
""" |
|
entries = [] |
|
|
|
for item in submission_data: |
|
|
|
entry = { |
|
"model_name": item.get("model_name", "Unknown Model"), |
|
"per_category_metrics": {}, |
|
"avg_metrics": {}, |
|
"submission_date": datetime.now().isoformat(), |
|
"version": item.get("version", "v0") |
|
} |
|
|
|
|
|
for key in ["model_type", "base_model", "revision", "precision", "weight_type"]: |
|
if key in item: |
|
entry[key] = item[key] |
|
|
|
|
|
if "per_category_metrics" in item: |
|
entry["per_category_metrics"] = item["per_category_metrics"] |
|
|
|
|
|
if "avg_metrics" in item: |
|
entry["avg_metrics"] = item["avg_metrics"] |
|
|
|
entries.append(entry) |
|
|
|
return entries |
|
|
|
|
|
def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame: |
|
""" |
|
Convert leaderboard data to a pandas DataFrame for display. |
|
""" |
|
rows = [] |
|
|
|
for entry in leaderboard_data.get("entries", []): |
|
model_name = entry.get("model_name", "Unknown Model") |
|
|
|
|
|
row = { |
|
"model_name": model_name, |
|
"model_type": entry.get("model_type", "Unknown"), |
|
"submission_date": entry.get("submission_date", ""), |
|
"version": entry.get("version", "v0"), |
|
"guard_model_type": entry.get("guard_model_type", "llm_regexp").lower() |
|
} |
|
|
|
|
|
for key in ["base_model", "revision", "precision", "weight_type"]: |
|
if key in entry: |
|
row[key] = entry[key] |
|
|
|
|
|
for key, value in entry.items(): |
|
if any(test_type in key for test_type in TEST_TYPES) or key in ["average_f1", "average_recall", "average_precision"]: |
|
row[key] = value |
|
|
|
|
|
avg_metrics = entry.get("avg_metrics", {}) |
|
if avg_metrics: |
|
for test_type in TEST_TYPES: |
|
if test_type in avg_metrics: |
|
metrics = avg_metrics[test_type] |
|
for metric in METRICS: |
|
if metric in metrics: |
|
col_name = f"{test_type}_{metric}" |
|
row[col_name] = metrics[metric] |
|
|
|
|
|
if metric == "f1_binary": |
|
row[f"{test_type}_f1"] = metrics[metric] |
|
|
|
|
|
if "average_f1" not in row: |
|
f1_values = [] |
|
for test_type in TEST_TYPES: |
|
if test_type in avg_metrics and "f1_binary" in avg_metrics[test_type]: |
|
f1_values.append(avg_metrics[test_type]["f1_binary"]) |
|
if f1_values: |
|
row["average_f1"] = sum(f1_values) / len(f1_values) |
|
|
|
if "average_recall" not in row: |
|
recall_values = [] |
|
for test_type in TEST_TYPES: |
|
if test_type in avg_metrics and "recall_binary" in avg_metrics[test_type]: |
|
recall_values.append(avg_metrics[test_type]["recall_binary"]) |
|
if recall_values: |
|
row["average_recall"] = sum(recall_values) / len(recall_values) |
|
|
|
if "average_precision" not in row: |
|
precision_values = [] |
|
for test_type in TEST_TYPES: |
|
if test_type in avg_metrics and "precision_binary" in avg_metrics[test_type]: |
|
precision_values.append(avg_metrics[test_type]["precision_binary"]) |
|
if precision_values: |
|
row["average_precision"] = sum(precision_values) / len(precision_values) |
|
|
|
rows.append(row) |
|
|
|
|
|
df = pd.DataFrame(rows) |
|
|
|
|
|
for test_type in TEST_TYPES: |
|
if f"{test_type}_f1" not in df.columns: |
|
df[f"{test_type}_f1"] = None |
|
if f"{test_type}_f1_binary" not in df.columns: |
|
df[f"{test_type}_f1_binary"] = None |
|
if f"{test_type}_recall_binary" not in df.columns: |
|
df[f"{test_type}_recall_binary"] = None |
|
if f"{test_type}_precision_binary" not in df.columns: |
|
df[f"{test_type}_precision_binary"] = None |
|
|
|
if not df.empty and "average_f1" in df.columns: |
|
df = df.sort_values(by="average_f1", ascending=False) |
|
|
|
return df |
|
|
|
|
|
def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict]) -> Dict: |
|
""" |
|
Add new entries to the leaderboard, replacing any with the same model name. |
|
""" |
|
|
|
existing_entries = { |
|
(entry["model_name"], entry.get("version", "v0")): i |
|
for i, entry in enumerate(leaderboard_data.get("entries", [])) |
|
} |
|
|
|
|
|
for new_entry in new_entries: |
|
model_name = new_entry.get("model_name") |
|
version = new_entry.get("version", "v0") |
|
|
|
if (model_name, version) in existing_entries: |
|
|
|
leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry |
|
else: |
|
|
|
if "entries" not in leaderboard_data: |
|
leaderboard_data["entries"] = [] |
|
leaderboard_data["entries"].append(new_entry) |
|
|
|
|
|
leaderboard_data["last_updated"] = datetime.now().isoformat() |
|
|
|
return leaderboard_data |
|
|
|
|
|
def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]: |
|
""" |
|
Process a JSONL submission file and extract entries. |
|
""" |
|
entries = [] |
|
try: |
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
try: |
|
entry = json.loads(line) |
|
entries.append(entry) |
|
except json.JSONDecodeError as e: |
|
return [], f"Invalid JSON in submission file: {e}" |
|
|
|
if not entries: |
|
return [], "Submission file is empty" |
|
|
|
return entries, "Successfully processed submission" |
|
except Exception as e: |
|
return [], f"Error processing submission file: {e}" |
|
|