Spaces:
Running
Running
File size: 10,648 Bytes
8f8b054 cacf045 2a77201 340b448 d1b5811 8f8b054 d1b5811 8f8b054 2a77201 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 e14ecb7 8030161 1012e18 a392854 d1b5811 2a77201 d2d9264 0176215 2587718 9185ad4 2587718 d2d9264 1012e18 8aef216 a392854 8aef216 92aed37 a392854 d1b5811 a392854 d1b5811 a392854 d1b5811 a392854 d1b5811 a392854 d1b5811 a392854 d1b5811 a392854 d1b5811 a392854 d1b5811 1012e18 d1b5811 7e7ba0a 0176215 2a77201 d2d9264 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 cacf045 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 2a77201 8f8b054 d1b5811 8f8b054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage of data for training
percentage_values = [10, 30, 50, 70, 100]
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
percentage = percentage_values[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") # Assume complexity 16 for simplicity
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
return raw_image, embeddings_image
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
# Function to load the pre-trained model from your cloned repository
def load_custom_model():
from lwm_model import LWM # Assuming the model is defined in lwm_model.py
model = LWM() # Modify this according to your model initialization
model.eval()
return model
import importlib.util
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage_idx):
percentage = percentage_values[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage)
print(f'Number of Training Samples: {train_size}')
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to calculate Euclidean distance between a point and a centroid
def euclidean_distance(x, centroid):
return np.linalg.norm(x - centroid)
# Function to classify test data based on distance to class centroids
def classify_based_on_distance(train_data, train_labels, test_data):
centroid_0 = np.mean(train_data[train_labels == 0], axis=0)
centroid_1 = np.mean(train_data[train_labels == 1], axis=0)
predictions = []
for test_point in test_data:
dist_0 = euclidean_distance(test_point, centroid_0)
dist_1 = euclidean_distance(test_point, centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return np.array(predictions)
# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(5, 5))
plt.imshow(cm, cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.colorbar()
plt.xticks([0, 1], labels=[0, 1])
plt.yticks([0, 1], labels=[0, 1])
plt.tight_layout()
plt.savefig(f"{title}.png")
return Image.open(f"{title}.png")
# Function to process the uploaded HDF5 file and perform classification using the custom model
def process_hdf5_file(uploaded_file, percentage_idx):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
# Step 1: Clone the repository if not already done
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Step 2: Verify the repository was cloned and change the working directory
if os.path.exists(model_repo_dir):
os.chdir(model_repo_dir)
print(f"Changed working directory to {os.getcwd()}")
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
else:
print(f"Directory {model_repo_dir} does not exist.")
return
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
# Load lwm_model
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
# Load input_preprocess
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
# Load inference
inference = load_module_from_path("inference", inference_path)
# Step 4: Load the model from lwm_model module
device = 'cpu'
print(f"Loading the LWM model on {device}...")
model = lwm_model.LWM.from_pretrained(device=device)
# Step 5: Load the HDF5 file and extract the channels and labels
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file
labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file
print(f"Loaded dataset with {channels.shape[0]} samples.")
# Step 6: Split the dataset into training and test sets
train_data_raw, test_data_raw, train_labels, test_labels = split_dataset(channels, labels, percentage_idx)
# Step 7: Tokenize the data using the tokenizer from input_preprocess
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
train_data_emb, test_data_emb, _, _ = split_dataset(preprocessed_chs, labels, percentage_idx)
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
# Step 9: Generate confusion matrices for both raw and embeddings
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, capture.get_output()
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
sys.stdout = sys.__stdout__ # Reset print statements
# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx):
if file is not None:
return process_hdf5_file(file, percentage_idx)
else:
return display_predefined_images(percentage_idx), None
# Define the Gradio interface
with gr.Blocks(css="""
.vertical-slider input[type=range] {
writing-mode: bt-lr; /* IE */
-webkit-appearance: slider-vertical; /* WebKit */
width: 8px;
height: 200px;
}
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
""") as demo:
# Contact Section
gr.Markdown(
"""
## Contact
<div style="display: flex; align-items: center;">
<a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>
<a target="_blank" href="mailto:[email protected]"><img src="https://img.shields.io/badge/[email protected]?logo=gmail " alt="Email"></a>
</div>
"""
)
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
output_textbox = gr.Textbox(label="Console Output", lines=10)
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Launch the app
if __name__ == "__main__":
demo.launch()
|