File size: 6,958 Bytes
8f8b054
 
 
 
cacf045
2a77201
 
340b448
 
8f8b054
 
 
 
 
 
 
 
 
2a77201
 
 
 
 
 
 
 
 
 
 
 
 
8f8b054
 
 
 
 
 
 
 
 
 
 
e14ecb7
8030161
 
 
 
1012e18
cacf045
 
2a77201
 
d2d9264
0176215
2587718
 
 
9185ad4
2587718
 
 
d2d9264
1012e18
8aef216
 
 
 
 
 
92aed37
8030161
 
 
1012e18
8030161
7e7ba0a
0176215
2a77201
 
 
d2d9264
8f8b054
 
 
 
cacf045
8f8b054
8030161
8f8b054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacf045
 
8f8b054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacf045
8f8b054
 
 
 
 
 
 
 
 
 
 
 
2a77201
8f8b054
2a77201
 
 
8f8b054
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess

# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")

# Specific values for percentage and complexity
percentage_values = [10, 30, 50, 70, 100]
complexity_values = [16, 32]

# Custom class to capture print output
class PrintCapture(io.StringIO):
    def __init__(self):
        super().__init__()
        self.output = []

    def write(self, txt):
        self.output.append(txt)
        super().write(txt)

    def get_output(self):
        return ''.join(self.output)

# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx, complexity_idx):
    percentage = percentage_values[percentage_idx]
    complexity = complexity_values[complexity_idx]
    raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
    embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
    
    raw_image = Image.open(raw_image_path)
    embeddings_image = Image.open(embeddings_image_path)
    
    return raw_image, embeddings_image

# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
    random_image = np.random.rand(*size, 3) * 255
    return Image.fromarray(random_image.astype('uint8'))

# Function to process the uploaded .p file and perform inference using the custom model
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
    capture = PrintCapture()
    sys.stdout = capture  # Redirect print statements to capture
    
    try:
        model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
        model_repo_dir = "./LWM"

        # Step 1: Clone the repository if not already done
        if not os.path.exists(model_repo_dir):
            print(f"Cloning model repository from {model_repo_url}...")
            subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)

        # Step 2: Verify the repository was cloned and change the working directory
        if os.path.exists(model_repo_dir):
            os.chdir(model_repo_dir)
            print(f"Changed working directory to {os.getcwd()}")
        else:
            print(f"Directory {model_repo_dir} does not exist.")
            return

        # Simulate processing and generating random images
        raw_image = create_random_image()
        embeddings_image = create_random_image()

        return raw_image, embeddings_image, capture.get_output()

    except Exception as e:
        return str(e), str(e), capture.get_output()

    finally:
        sys.stdout = sys.__stdout__  # Reset print statements

# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx, complexity_idx):
    if file is not None:
        return process_p_file(file, percentage_idx, complexity_idx)
    else:
        return create_random_image(), create_random_image(), None

# Define the Gradio interface
with gr.Blocks(css="""
    .vertical-slider input[type=range] {
        writing-mode: bt-lr; /* IE */
        -webkit-appearance: slider-vertical; /* WebKit */
        width: 8px;
        height: 200px;
    }
    .slider-container {
        display: inline-block;
        margin-right: 50px;
        text-align: center;
    }
""") as demo:
    
    # Contact Section
    gr.Markdown(
        """
        ## Contact
        <div style="display: flex; align-items: center;">
            <a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>&nbsp;&nbsp;
            <a target="_blank" href="mailto:[email protected]"><img src="https://img.shields.io/badge/[email protected]?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
        </div>
        """
    )
    
    # Tabs for Beam Prediction and LoS/NLoS Classification
    with gr.Tab("Beam Prediction Task"):
        gr.Markdown("### Beam Prediction Task")
        
        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Percentage of Data for Training")
                percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Task Complexity")
                complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")

        with gr.Row():
            raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)

        percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
        complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])

    with gr.Tab("LoS/NLoS Classification Task"):
        gr.Markdown("### LoS/NLoS Classification Task")
        
        file_input = gr.File(label="Upload .p File", file_types=[".p"])

        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Percentage of Data for Training")
                percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Task Complexity")
                complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")

        with gr.Row():
            raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
            output_textbox = gr.Textbox(label="Console Output", lines=10)

        file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])

# Launch the app
if __name__ == "__main__":
    demo.launch()