Spaces:
Running
Running
import gradio as gr | |
import os | |
from PIL import Image | |
# Paths to the images folder | |
RAW_PATH = os.path.join("images", "raw") | |
EMBEDDINGS_PATH = os.path.join("images", "embeddings") | |
# Specific values for percentage and complexity | |
percentage_values = [10, 30, 50, 70, 100] | |
complexity_values = [16, 32] | |
# Function to load and display images based on user selection | |
def display_images(percentage_idx, complexity_idx): | |
# Map the slider index to the actual value | |
percentage = percentage_values[percentage_idx] | |
complexity = complexity_values[complexity_idx] | |
# Generate the paths to the images | |
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") | |
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") | |
# Load images using PIL | |
raw_image = Image.open(raw_image_path) | |
embeddings_image = Image.open(embeddings_image_path) | |
# Return the loaded images | |
return raw_image, embeddings_image | |
# Define the beam prediction function (template based) | |
def beam_prediction(percentage_idx, complexity_idx): | |
# Add your beam prediction logic here (this is placeholder code) | |
raw_img, embeddings_img = display_images(percentage_idx, complexity_idx) | |
return raw_img, embeddings_img | |
# Define the LoS/NLoS classification function (template based) | |
def los_nlos_classification(uploaded_file, percentage_idx, complexity_idx): | |
# Placeholder code for processing the uploaded .py file (can be extended) | |
# Add your LoS/NLoS classification logic here | |
raw_img, embeddings_img = display_images(percentage_idx, complexity_idx) | |
return raw_img, embeddings_img | |
# Define the Gradio interface | |
with gr.Blocks(css=""" | |
.vertical-slider input[type=range] { | |
writing-mode: bt-lr; /* IE */ | |
-webkit-appearance: slider-vertical; /* WebKit */ | |
width: 8px; | |
height: 200px; | |
} | |
.slider-container { | |
display: inline-block; | |
margin-right: 50px; | |
text-align: center; | |
} | |
""") as demo: | |
# Contact Section | |
gr.Markdown( | |
""" | |
## Contact | |
<div style="display: flex; align-items: center;"> | |
<a target="_blank" href="mailto:[email protected]"><img src="https://img.shields.io/badge/[email protected]?logo=gmail " alt="Email"></a> | |
<a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://img.shields.io/badge/[email protected]?logo=telegram " alt="Telegram"></a> | |
</div> | |
""" | |
) | |
# Tabs for Beam Prediction and LoS/NLoS Classification | |
with gr.Tab("Beam Prediction Task"): | |
gr.Markdown("### Beam Prediction Task") | |
# Sliders for percentage and complexity | |
with gr.Row(): | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Percentage of Data for Training") | |
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Task Complexity") | |
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
# Image outputs (display the images side by side and set a smaller size for the images) | |
with gr.Row(): | |
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
# Instant image updates when sliders change | |
percentage_slider_bp.change(fn=beam_prediction, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) | |
complexity_slider_bp.change(fn=beam_prediction, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) | |
with gr.Tab("LoS/NLoS Classification Task"): | |
gr.Markdown("### LoS/NLoS Classification Task") | |
# File uploader for uploading .py file | |
file_input = gr.File(label="Upload .py File", file_types=[".py"]) | |
# Sliders for percentage and complexity | |
with gr.Row(): | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Percentage of Data for Training") | |
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Task Complexity") | |
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
# Image outputs (display the images side by side and set a smaller size for the images) | |
with gr.Row(): | |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
# Instant image updates when sliders or file input change | |
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) | |
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) | |
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |