Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -330,21 +330,32 @@ def plot_confusion_matrix(y_true, y_pred, title):
|
|
330 |
# Calculate F1 Score
|
331 |
f1 = f1_score(y_true, y_pred, average='weighted')
|
332 |
|
333 |
-
plt.style.use('dark_background')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
plt.figure(figsize=(5, 5))
|
335 |
|
336 |
# Plot the confusion matrix with a dark-mode compatible colormap
|
337 |
-
sns.heatmap(cm, annot=True, fmt="d", cmap=
|
338 |
|
339 |
# Add F1-score to the title
|
340 |
-
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=
|
341 |
|
342 |
# Customize tick labels for dark mode
|
343 |
-
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
344 |
-
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
345 |
|
346 |
-
plt.ylabel('True label', color=
|
347 |
-
plt.xlabel('Predicted label', color=
|
348 |
plt.tight_layout()
|
349 |
|
350 |
# Save the plot as an image
|
|
|
330 |
# Calculate F1 Score
|
331 |
f1 = f1_score(y_true, y_pred, average='weighted')
|
332 |
|
333 |
+
#plt.style.use('dark_background')
|
334 |
+
|
335 |
+
# Set styling based on light or dark mode
|
336 |
+
if light_mode:
|
337 |
+
plt.style.use('default') # Light mode styling
|
338 |
+
text_color = 'black'
|
339 |
+
cmap = 'Blues' # Light-mode-friendly colormap
|
340 |
+
else:
|
341 |
+
plt.style.use('dark_background') # Dark mode styling
|
342 |
+
text_color = 'white'
|
343 |
+
cmap = 'magma' # Dark-mode-friendly colormap
|
344 |
+
|
345 |
plt.figure(figsize=(5, 5))
|
346 |
|
347 |
# Plot the confusion matrix with a dark-mode compatible colormap
|
348 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
|
349 |
|
350 |
# Add F1-score to the title
|
351 |
+
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=text_color, fontsize=14)
|
352 |
|
353 |
# Customize tick labels for dark mode
|
354 |
+
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
|
355 |
+
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
|
356 |
|
357 |
+
plt.ylabel('True label', color=text_color, fontsize=12)
|
358 |
+
plt.xlabel('Predicted label', color=text_color, fontsize=12)
|
359 |
plt.tight_layout()
|
360 |
|
361 |
# Save the plot as an image
|