vidhanm
Add application files for nanoVLM
4670dfa
raw
history blame
4.36 kB
import gradio as gr
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
import os
# Determine the device to use
# Using os.environ.get to allow device override from Space hardware config if needed
# Defaults to CUDA if available, else CPU.
device_choice = os.environ.get("DEVICE", "auto")
if device_choice == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
else:
device = device_choice
print(f"Using device: {device}")
# Load the model and processor
model_id = "lusxvr/nanoVLM-222M"
try:
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id).to(device)
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading model/processor: {e}")
# If loading fails, we'll have the Gradio app display an error.
# This helps in debugging if the Space doesn't start correctly.
processor = None
model = None
def generate_text_for_image(image_input, prompt_input):
"""
Generates text based on an image and a text prompt.
"""
if model is None or processor is None:
return "Error: Model or processor not loaded. Check the Space logs for details."
if image_input is None:
return "Please upload an image."
if not prompt_input:
return "Please provide a prompt (e.g., 'Describe this image' or 'What color is the car?')."
try:
# Ensure the image is in PIL format and RGB
if not isinstance(image_input, Image.Image):
pil_image = Image.fromarray(image_input)
else:
pil_image = image_input
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
# Prepare inputs for the model
# The prompt for nanoVLM is typically a question or an instruction.
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
# Generate text
# You can adjust max_new_tokens, temperature, top_k, etc.
generated_ids = model.generate(
**inputs,
max_new_tokens=150, # Increased for potentially longer descriptions
num_beams=3, # Example of adding beam search
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the generated tokens
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# The output might sometimes include the prompt itself, depending on the model.
# Simple heuristic to remove prompt if it appears at the beginning:
if generated_text.startswith(prompt_input):
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
else:
cleaned_text = generated_text
return cleaned_text.strip()
except Exception as e:
print(f"Error during generation: {e}")
return f"An error occurred: {str(e)}"
# Create the Gradio interface
description = """
Upload an image and provide a text prompt (e.g., "What is in this image?", "Describe the animal in detail.").
The model will generate a textual response based on the visual content and your query.
This Space uses the `lusxvr/nanoVLM-222M` model.
"""
# Example image from COCO dataset
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # A cat and a remote
iface = gr.Interface(
fn=generate_text_for_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt/Question", info="e.g., 'What is this a picture of?', 'Describe the main subject.', 'How many animals are there?'")
],
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
title="Interactive nanoVLM-222M Demo",
description=description,
examples=[
[example_image_url, "a photo of a"],
[example_image_url, "Describe the image in detail."],
[example_image_url, "What objects are on the sofa?"],
],
cache_examples=True # Cache results for examples to load faster
)
if __name__ == "__main__":
# For Hugging Face Spaces, it's common to launch with server_name="0.0.0.0"
# The Space infrastructure handles the public URL and port mapping.
iface.launch(server_name="0.0.0.0", server_port=7860)