Spaces:
Running
Running
import sys | |
import os | |
# Add the cloned nanoVLM directory to Python's system path | |
NANOVLM_REPO_PATH = "/app/nanoVLM" | |
if NANOVLM_REPO_PATH not in sys.path: | |
sys.path.insert(0, NANOVLM_REPO_PATH) | |
import gradio as gr | |
from PIL import Image | |
import torch | |
# Import specific processor components | |
from transformers import CLIPImageProcessor, GPT2TokenizerFast | |
# Import the custom VisionLanguageModel class | |
try: | |
from models.vision_language_model import VisionLanguageModel | |
print("Successfully imported VisionLanguageModel from nanoVLM clone.") | |
except ImportError as e: | |
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}.") | |
VisionLanguageModel = None | |
# Determine the device to use | |
device_choice = os.environ.get("DEVICE", "auto") | |
if device_choice == "auto": | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
else: | |
device = device_choice | |
print(f"Using device: {device}") | |
# --- Configuration for model components --- | |
model_id_for_weights = "lusxvr/nanoVLM-222M" | |
image_processor_id = "openai/clip-vit-base-patch32" | |
# Load the tokenizer from its original source to ensure all files are present | |
tokenizer_id = "gpt2" # Changed from "lusxvr/nanoVLM-222M" | |
image_processor = None | |
tokenizer = None | |
model = None | |
if VisionLanguageModel: | |
try: | |
print(f"Attempting to load CLIPImageProcessor from: {image_processor_id}") | |
image_processor = CLIPImageProcessor.from_pretrained(image_processor_id, trust_remote_code=True) | |
print("CLIPImageProcessor loaded.") | |
print(f"Attempting to load GPT2TokenizerFast from: {tokenizer_id}") | |
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_id, trust_remote_code=True) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token # Important for GPT-2 | |
print("Set tokenizer pad_token to eos_token.") | |
print("GPT2TokenizerFast loaded.") | |
print(f"Attempting to load model weights from {model_id_for_weights} using VisionLanguageModel.from_pretrained") | |
model = VisionLanguageModel.from_pretrained( | |
model_id_for_weights, | |
trust_remote_code=True | |
).to(device) | |
print("Model loaded successfully.") | |
model.eval() | |
except Exception as e: | |
print(f"Error loading model or processor components: {e}") | |
import traceback | |
traceback.print_exc() | |
image_processor = None | |
tokenizer = None | |
model = None | |
else: | |
print("Custom VisionLanguageModel class not imported, cannot load model.") | |
def prepare_inputs(text_list, image_input, image_processor_instance, tokenizer_instance, device_to_use): | |
if image_processor_instance is None or tokenizer_instance is None: | |
raise ValueError("Image processor or tokenizer not initialized.") | |
processed_image = image_processor_instance(images=image_input, return_tensors="pt").pixel_values.to(device_to_use) | |
processed_text = tokenizer_instance( | |
text=text_list, return_tensors="pt", padding=True, truncation=True, max_length=tokenizer_instance.model_max_length | |
) | |
input_ids = processed_text.input_ids.to(device_to_use) | |
attention_mask = processed_text.attention_mask.to(device_to_use) | |
return {"pixel_values": processed_image, "input_ids": input_ids, "attention_mask": attention_mask} | |
def generate_text_for_image(image_input, prompt_input): | |
if model is None or image_processor is None or tokenizer is None: | |
return "Error: Model or processor components not loaded correctly. Check logs." | |
if image_input is None: | |
return "Please upload an image." | |
if not prompt_input: | |
return "Please provide a prompt." | |
try: | |
if not isinstance(image_input, Image.Image): | |
pil_image = Image.fromarray(image_input) | |
else: | |
pil_image = image_input | |
if pil_image.mode != "RGB": | |
pil_image = pil_image.convert("RGB") | |
inputs = prepare_inputs( | |
text_list=[prompt_input], | |
image_input=pil_image, | |
image_processor_instance=image_processor, | |
tokenizer_instance=tokenizer, | |
device_to_use=device | |
) | |
generated_ids = model.generate( | |
pixel_values=inputs['pixel_values'], | |
input_ids=inputs['input_ids'], | |
attention_mask=inputs['attention_mask'], | |
max_new_tokens=150, | |
num_beams=3, | |
no_repeat_ngram_size=2, | |
early_stopping=True, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
generated_text_list = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
generated_text = generated_text_list[0] if generated_text_list else "" | |
if prompt_input and generated_text.startswith(prompt_input): | |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:") | |
else: | |
cleaned_text = generated_text | |
return cleaned_text.strip() | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
import traceback | |
traceback.print_exc() | |
return f"An error occurred during text generation: {str(e)}" | |
description = "Interactive demo for lusxvr/nanoVLM-222M." | |
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
iface = gr.Interface( | |
fn=generate_text_for_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(label="Your Prompt/Question") | |
], | |
outputs=gr.Textbox(label="Generated Text", show_copy_button=True), | |
title="Interactive nanoVLM-222M Demo", | |
description=description, | |
examples=[ | |
[example_image_url, "a photo of a"], | |
[example_image_url, "Describe the image in detail."], | |
], | |
# cache_examples=True, # Temporarily commented out to ensure Gradio starts with minimal config | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
if model is None or image_processor is None or tokenizer is None: | |
print("CRITICAL: Model or processor components failed to load.") | |
else: | |
print("Launching Gradio interface...") | |
iface.launch(server_name="0.0.0.0", server_port=7860) |