Spaces:
Running
Running
File size: 6,197 Bytes
e198913 97c8139 e198913 4670dfa 16bf2d1 e198913 16bf2d1 e198913 97c8139 e198913 16bf2d1 e198913 4670dfa 978a6b3 a4644a0 978a6b3 16bf2d1 fbe5121 97c8139 e198913 978a6b3 16bf2d1 978a6b3 16bf2d1 a4644a0 16bf2d1 e198913 978a6b3 16bf2d1 978a6b3 16bf2d1 97c8139 16bf2d1 e198913 16bf2d1 978a6b3 a4644a0 16bf2d1 e198913 97c8139 e198913 978a6b3 16bf2d1 978a6b3 16bf2d1 978a6b3 16bf2d1 4670dfa 16bf2d1 4670dfa e198913 4670dfa 16bf2d1 978a6b3 16bf2d1 fbe5121 4670dfa 16bf2d1 fbe5121 4670dfa 16bf2d1 978a6b3 4670dfa 16bf2d1 fbe5121 4670dfa 16bf2d1 978a6b3 fbe5121 4670dfa e198913 fbe5121 4670dfa e198913 4670dfa a4644a0 fbe5121 4670dfa 16bf2d1 fbe5121 e198913 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import sys
import os
# Add the cloned nanoVLM directory to Python's system path
NANOVLM_REPO_PATH = "/app/nanoVLM"
if NANOVLM_REPO_PATH not in sys.path:
sys.path.insert(0, NANOVLM_REPO_PATH)
import gradio as gr
from PIL import Image
import torch
# Import specific processor components
from transformers import CLIPImageProcessor, GPT2TokenizerFast
# Import the custom VisionLanguageModel class
try:
from models.vision_language_model import VisionLanguageModel
print("Successfully imported VisionLanguageModel from nanoVLM clone.")
except ImportError as e:
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}.")
VisionLanguageModel = None
# Determine the device to use
device_choice = os.environ.get("DEVICE", "auto")
if device_choice == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
else:
device = device_choice
print(f"Using device: {device}")
# --- Configuration for model components ---
model_id_for_weights = "lusxvr/nanoVLM-222M"
image_processor_id = "openai/clip-vit-base-patch32"
# Load the tokenizer from its original source to ensure all files are present
tokenizer_id = "gpt2" # Changed from "lusxvr/nanoVLM-222M"
image_processor = None
tokenizer = None
model = None
if VisionLanguageModel:
try:
print(f"Attempting to load CLIPImageProcessor from: {image_processor_id}")
image_processor = CLIPImageProcessor.from_pretrained(image_processor_id, trust_remote_code=True)
print("CLIPImageProcessor loaded.")
print(f"Attempting to load GPT2TokenizerFast from: {tokenizer_id}")
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_id, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Important for GPT-2
print("Set tokenizer pad_token to eos_token.")
print("GPT2TokenizerFast loaded.")
print(f"Attempting to load model weights from {model_id_for_weights} using VisionLanguageModel.from_pretrained")
model = VisionLanguageModel.from_pretrained(
model_id_for_weights,
trust_remote_code=True
).to(device)
print("Model loaded successfully.")
model.eval()
except Exception as e:
print(f"Error loading model or processor components: {e}")
import traceback
traceback.print_exc()
image_processor = None
tokenizer = None
model = None
else:
print("Custom VisionLanguageModel class not imported, cannot load model.")
def prepare_inputs(text_list, image_input, image_processor_instance, tokenizer_instance, device_to_use):
if image_processor_instance is None or tokenizer_instance is None:
raise ValueError("Image processor or tokenizer not initialized.")
processed_image = image_processor_instance(images=image_input, return_tensors="pt").pixel_values.to(device_to_use)
processed_text = tokenizer_instance(
text=text_list, return_tensors="pt", padding=True, truncation=True, max_length=tokenizer_instance.model_max_length
)
input_ids = processed_text.input_ids.to(device_to_use)
attention_mask = processed_text.attention_mask.to(device_to_use)
return {"pixel_values": processed_image, "input_ids": input_ids, "attention_mask": attention_mask}
def generate_text_for_image(image_input, prompt_input):
if model is None or image_processor is None or tokenizer is None:
return "Error: Model or processor components not loaded correctly. Check logs."
if image_input is None:
return "Please upload an image."
if not prompt_input:
return "Please provide a prompt."
try:
if not isinstance(image_input, Image.Image):
pil_image = Image.fromarray(image_input)
else:
pil_image = image_input
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
inputs = prepare_inputs(
text_list=[prompt_input],
image_input=pil_image,
image_processor_instance=image_processor,
tokenizer_instance=tokenizer,
device_to_use=device
)
generated_ids = model.generate(
pixel_values=inputs['pixel_values'],
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_new_tokens=150,
num_beams=3,
no_repeat_ngram_size=2,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id
)
generated_text_list = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
generated_text = generated_text_list[0] if generated_text_list else ""
if prompt_input and generated_text.startswith(prompt_input):
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
else:
cleaned_text = generated_text
return cleaned_text.strip()
except Exception as e:
print(f"Error during generation: {e}")
import traceback
traceback.print_exc()
return f"An error occurred during text generation: {str(e)}"
description = "Interactive demo for lusxvr/nanoVLM-222M."
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
iface = gr.Interface(
fn=generate_text_for_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt/Question")
],
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
title="Interactive nanoVLM-222M Demo",
description=description,
examples=[
[example_image_url, "a photo of a"],
[example_image_url, "Describe the image in detail."],
],
# cache_examples=True, # Temporarily commented out to ensure Gradio starts with minimal config
allow_flagging="never"
)
if __name__ == "__main__":
if model is None or image_processor is None or tokenizer is None:
print("CRITICAL: Model or processor components failed to load.")
else:
print("Launching Gradio interface...")
iface.launch(server_name="0.0.0.0", server_port=7860) |