Spaces:
Runtime error
Runtime error
""" | |
按中英混合识别 | |
按日英混合识别 | |
多语种启动切分识别语种 | |
全部按中文识别 | |
全部按英文识别 | |
全部按日文识别 | |
""" | |
import spaces | |
from module.mel_processing import mel_spectrogram_torch, spectrogram_torch | |
from text import chinese | |
from sv import SV | |
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new | |
from tools.i18n.i18n import I18nAuto, scan_language_list | |
from tools.assets import css, js, top_html | |
from text.cleaner import clean_text | |
from text import cleaned_text_to_sequence | |
from peft import LoraConfig, get_peft_model | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from time import time as ttime | |
from GPT_SoVITS.module.models import Generator, SynthesizerTrn, SynthesizerTrnV3 | |
import random | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
from feature_extractor import cnhubert | |
import numpy as np | |
import librosa | |
import gradio as gr | |
from config import pretrained_sovits_name | |
from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path | |
import json | |
import logging | |
import os | |
import re | |
import sys | |
import traceback | |
import warnings | |
import torch | |
import torchaudio | |
from text.LangSegmenter import LangSegmenter | |
from scipy.io.wavfile import write | |
import requests | |
import io | |
import zipfile | |
from huggingface_hub import hf_hub_download | |
import nltk | |
nltk.download(['averaged_perceptron_tagger', | |
'averaged_perceptron_tagger_eng', 'cmudict']) | |
zip_targets = { | |
"pretrained_models.zip": "/home/user/app/GPT_SoVITS", | |
"G2PWModel.zip": "/home/user/app/GPT_SoVITS/text" | |
} | |
repo_id = "XXXXRT/GPT-SoVITS-Pretrained" | |
for filename, target_dir in zip_targets.items(): | |
zip_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
os.makedirs(target_dir, exist_ok=True) | |
with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
zip_ref.extractall(target_dir) | |
print(f"{filename} 已解压到 {target_dir}") | |
# 保存原始构造器 | |
original_storage_new = torch.UntypedStorage.__new__ | |
def _untyped_storage_new_register(cls, *args, **kwargs): | |
cuda = False | |
device = kwargs.get('device') | |
# 先判断类型是否为 torch.device 再访问 type 属性 | |
if isinstance(device, torch.device) and device.type == 'cuda': | |
cuda = True | |
del kwargs['device'] | |
# 正确调用 __new__ | |
storage = torch._C.StorageBase.__new__(cls, *args, **kwargs) | |
# 标记是否是 ZeroGPU 模式 | |
if cuda: | |
storage._zerogpu = True | |
return storage | |
# 替换 __new__ 方法 | |
torch.UntypedStorage.__new__ = _untyped_storage_new_register | |
logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
logging.getLogger("urllib3").setLevel(logging.ERROR) | |
logging.getLogger("httpcore").setLevel(logging.ERROR) | |
logging.getLogger("httpx").setLevel(logging.ERROR) | |
logging.getLogger("asyncio").setLevel(logging.ERROR) | |
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
logging.getLogger("multipart.multipart").setLevel(logging.ERROR) | |
warnings.simplefilter(action="ignore", category=FutureWarning) | |
# os.system("bash install.sh") | |
version = model_version = os.environ.get("version", "v2") | |
SoVITS_names, GPT_names = get_weights_names() | |
print(SoVITS_names, GPT_names) | |
path_sovits_v3 = pretrained_sovits_name["v3"] | |
path_sovits_v4 = pretrained_sovits_name["v4"] | |
is_exist_s2gv3 = os.path.exists(path_sovits_v3) | |
is_exist_s2gv4 = os.path.exists(path_sovits_v4) | |
if os.path.exists("./weight.json"): | |
pass | |
else: | |
with open("./weight.json", "w", encoding="utf-8") as file: | |
json.dump({"GPT": {}, "SoVITS": {}}, file) | |
with open("./weight.json", "r", encoding="utf-8") as file: | |
weight_data = file.read() | |
weight_data = json.loads(weight_data) | |
gpt_path = os.environ.get("gpt_path", weight_data.get( | |
"GPT", {}).get(version, GPT_names[-1])) | |
sovits_path = os.environ.get("sovits_path", weight_data.get( | |
"SoVITS", {}).get(version, SoVITS_names[-1])) | |
if isinstance(gpt_path, list): | |
gpt_path = gpt_path[0] | |
if isinstance(sovits_path, list): | |
sovits_path = sovits_path[0] | |
# print(2333333) | |
# print(os.environ["gpt_path"]) | |
# print(gpt_path) | |
# print(GPT_names) | |
# print(weight_data) | |
# print(weight_data.get("GPT", {})) | |
# print(version)###GPT version里没有s2的v2pro | |
# print(weight_data.get("GPT", {}).get(version, GPT_names[-1])) | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base") | |
bert_path = os.environ.get( | |
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large") | |
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) | |
infer_ttswebui = int(infer_ttswebui) | |
is_share = os.environ.get("is_share", "False") | |
is_share = eval(is_share) | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() | |
# is_half=False | |
punctuation = set(["!", "?", "…", ",", ".", "-", " "]) | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
def set_seed(seed): | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
seed = int(seed) | |
random.seed(seed) | |
os.environ["PYTHONHASHSEED"] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
# set_seed(42) | |
language = os.environ.get("language", "zh_CN") | |
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language | |
i18n = I18nAuto(language=language) | |
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
device = "cuda" | |
dict_language_v1 = { | |
i18n("中文"): "all_zh", # 全部按中文识别 | |
i18n("英文"): "en", # 全部按英文识别#######不变 | |
i18n("日文"): "all_ja", # 全部按日文识别 | |
i18n("中英混合"): "zh", # 按中英混合识别####不变 | |
i18n("日英混合"): "ja", # 按日英混合识别####不变 | |
i18n("多语种混合"): "auto", # 多语种启动切分识别语种 | |
} | |
dict_language_v2 = { | |
i18n("中文"): "all_zh", # 全部按中文识别 | |
i18n("英文"): "en", # 全部按英文识别#######不变 | |
i18n("日文"): "all_ja", # 全部按日文识别 | |
i18n("粤语"): "all_yue", # 全部按中文识别 | |
i18n("韩文"): "all_ko", # 全部按韩文识别 | |
i18n("中英混合"): "zh", # 按中英混合识别####不变 | |
i18n("日英混合"): "ja", # 按日英混合识别####不变 | |
i18n("粤英混合"): "yue", # 按粤英混合识别####不变 | |
i18n("韩英混合"): "ko", # 按韩英混合识别####不变 | |
i18n("多语种混合"): "auto", # 多语种启动切分识别语种 | |
i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 | |
} | |
dict_language = dict_language_v1 if version == "v1" else dict_language_v2 | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
# todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt | |
# symbol_version-model_version-if_lora_v3 | |
v3v4set = {"v3", "v4"} | |
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): | |
if "!" in sovits_path or "!" in sovits_path: | |
sovits_path = name2sovits_path[sovits_path] | |
global vq_model, hps, version, model_version, dict_language, if_lora_v3 | |
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast( | |
sovits_path) | |
print(sovits_path, version, model_version, if_lora_v3) | |
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4 | |
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 | |
if if_lora_v3 == True and is_exist == False: | |
info = path_sovits + "SoVITS %s" % model_version + \ | |
i18n("底模缺失,无法加载相应 LoRA 权重") | |
gr.Warning(info) | |
raise FileExistsError(info) | |
dict_language = dict_language_v1 if version == "v1" else dict_language_v2 | |
if prompt_language is not None and text_language is not None: | |
if prompt_language in list(dict_language.keys()): | |
prompt_text_update, prompt_language_update = ( | |
{"__type__": "update"}, | |
{"__type__": "update", "value": prompt_language}, | |
) | |
else: | |
prompt_text_update = {"__type__": "update", "value": ""} | |
prompt_language_update = { | |
"__type__": "update", "value": i18n("中文")} | |
if text_language in list(dict_language.keys()): | |
text_update, text_language_update = {"__type__": "update"}, { | |
"__type__": "update", "value": text_language} | |
else: | |
text_update = {"__type__": "update", "value": ""} | |
text_language_update = {"__type__": "update", "value": i18n("中文")} | |
if model_version in v3v4set: | |
visible_sample_steps = True | |
visible_inp_refs = False | |
else: | |
visible_sample_steps = False | |
visible_inp_refs = True | |
yield ( | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
prompt_text_update, | |
prompt_language_update, | |
text_update, | |
text_language_update, | |
{ | |
"__type__": "update", | |
"visible": visible_sample_steps, | |
"value": 32 if model_version == "v3" else 8, | |
"choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], | |
}, | |
{"__type__": "update", "visible": visible_inp_refs}, | |
{"__type__": "update", "value": False, | |
"interactive": True if model_version not in v3v4set else False}, | |
{"__type__": "update", "visible": True if model_version == "v3" else False}, | |
{"__type__": "update", "value": i18n( | |
"模型加载中,请等待"), "interactive": False}, | |
) | |
dict_s2 = load_sovits_new(sovits_path) | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
if "enc_p.text_embedding.weight" not in dict_s2["weight"]: | |
hps.model.version = "v2" # v3model,v2sybomls | |
elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322: | |
hps.model.version = "v1" | |
else: | |
hps.model.version = "v2" | |
version = hps.model.version | |
# print("sovits版本:",hps.model.version) | |
if model_version not in v3v4set: | |
if "Pro" not in model_version: | |
model_version = version | |
else: | |
hps.model.version = model_version | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
) | |
else: | |
hps.model.version = model_version | |
vq_model = SynthesizerTrnV3( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
) | |
if "pretrained" not in sovits_path: | |
try: | |
del vq_model.enc_q | |
except: | |
pass | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
if if_lora_v3 == False: | |
print("loading sovits_%s" % model_version, | |
vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
else: | |
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 | |
print( | |
"loading sovits_%spretrained_G" % model_version, | |
vq_model.load_state_dict(load_sovits_new( | |
path_sovits)["weight"], strict=False), | |
) | |
lora_rank = dict_s2["lora_rank"] | |
lora_config = LoraConfig( | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
r=lora_rank, | |
lora_alpha=lora_rank, | |
init_lora_weights=True, | |
) | |
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config) | |
print("loading sovits_%s_lora%s" % (model_version, lora_rank)) | |
vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
vq_model.cfm = vq_model.cfm.merge_and_unload() | |
# torch.save(vq_model.state_dict(),"merge_win.pth") | |
vq_model.eval() | |
yield ( | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
prompt_text_update, | |
prompt_language_update, | |
text_update, | |
text_language_update, | |
{ | |
"__type__": "update", | |
"visible": visible_sample_steps, | |
"value": 32 if model_version == "v3" else 8, | |
"choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], | |
}, | |
{"__type__": "update", "visible": visible_inp_refs}, | |
{"__type__": "update", "value": False, | |
"interactive": True if model_version not in v3v4set else False}, | |
{"__type__": "update", "visible": True if model_version == "v3" else False}, | |
{"__type__": "update", "value": i18n("合成语音"), "interactive": True}, | |
) | |
with open("./weight.json") as f: | |
data = f.read() | |
data = json.loads(data) | |
data["SoVITS"][version] = sovits_path | |
with open("./weight.json", "w") as f: | |
f.write(json.dumps(data)) | |
try: | |
next(change_sovits_weights(sovits_path)) | |
except: | |
pass | |
def change_gpt_weights(gpt_path): | |
if "!" in gpt_path or "!" in gpt_path: | |
gpt_path = name2gpt_path[gpt_path] | |
global hz, max_sec, t2s_model, config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False) | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
# total = sum([param.nelement() for param in t2s_model.parameters()]) | |
# print("Number of parameter: %.2fM" % (total / 1e6)) | |
with open("./weight.json") as f: | |
data = f.read() | |
data = json.loads(data) | |
data["GPT"][version] = gpt_path | |
with open("./weight.json", "w") as f: | |
f.write(json.dumps(data)) | |
change_gpt_weights(gpt_path) | |
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" | |
now_dir = os.getcwd() | |
def clean_hifigan_model(): | |
global hifigan_model | |
if hifigan_model: | |
hifigan_model = hifigan_model.cpu() | |
hifigan_model = None | |
try: | |
torch.cuda.empty_cache() | |
except: | |
pass | |
def clean_bigvgan_model(): | |
global bigvgan_model | |
if bigvgan_model: | |
bigvgan_model = bigvgan_model.cpu() | |
bigvgan_model = None | |
try: | |
torch.cuda.empty_cache() | |
except: | |
pass | |
def clean_sv_cn_model(): | |
global sv_cn_model | |
if sv_cn_model: | |
sv_cn_model.embedding_model = sv_cn_model.embedding_model.cpu() | |
sv_cn_model = None | |
try: | |
torch.cuda.empty_cache() | |
except: | |
pass | |
def init_bigvgan(): | |
global bigvgan_model, hifigan_model, sv_cn_model | |
from BigVGAN import bigvgan | |
bigvgan_model = bigvgan.BigVGAN.from_pretrained( | |
"%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % ( | |
now_dir,), | |
use_cuda_kernel=False, | |
) # if True, RuntimeError: Ninja is required to load C++ extensions | |
# remove weight norm in the model and set to eval mode | |
bigvgan_model.remove_weight_norm() | |
bigvgan_model = bigvgan_model.eval() | |
clean_hifigan_model() | |
clean_sv_cn_model() | |
if is_half == True: | |
bigvgan_model = bigvgan_model.half().to(device) | |
else: | |
bigvgan_model = bigvgan_model.to(device) | |
def init_hifigan(): | |
global hifigan_model, bigvgan_model, sv_cn_model | |
hifigan_model = Generator( | |
initial_channel=100, | |
resblock="1", | |
resblock_kernel_sizes=[3, 7, 11], | |
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
upsample_rates=[10, 6, 2, 2, 2], | |
upsample_initial_channel=512, | |
upsample_kernel_sizes=[20, 12, 4, 4, 4], | |
gin_channels=0, | |
is_bias=True, | |
) | |
hifigan_model.eval() | |
hifigan_model.remove_weight_norm() | |
state_dict_g = torch.load( | |
"%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % ( | |
now_dir,), | |
map_location="cpu", | |
weights_only=False, | |
) | |
print("loading vocoder", hifigan_model.load_state_dict(state_dict_g)) | |
clean_bigvgan_model() | |
clean_sv_cn_model() | |
if is_half == True: | |
hifigan_model = hifigan_model.half().to(device) | |
else: | |
hifigan_model = hifigan_model.to(device) | |
def init_sv_cn(): | |
global hifigan_model, bigvgan_model, sv_cn_model | |
sv_cn_model = SV(device, is_half) | |
clean_bigvgan_model() | |
clean_hifigan_model() | |
bigvgan_model = hifigan_model = sv_cn_model = None | |
if model_version == "v3": | |
init_bigvgan() | |
if model_version == "v4": | |
init_hifigan() | |
if model_version in {"v2Pro", "v2ProPlus"}: | |
init_sv_cn() | |
resample_transform_dict = {} | |
def resample(audio_tensor, sr0, sr1, device): | |
global resample_transform_dict | |
key = "%s-%s-%s" % (sr0, sr1, str(device)) | |
if key not in resample_transform_dict: | |
resample_transform_dict[key] = torchaudio.transforms.Resample( | |
sr0, sr1).to(device) | |
return resample_transform_dict[key](audio_tensor) | |
def get_spepc(hps, filename, dtype, device, is_v2pro=False): | |
# audio = load_audio(filename, int(hps.data.sampling_rate)) | |
# audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate)) | |
# audio = torch.FloatTensor(audio) | |
sr1 = int(hps.data.sampling_rate) | |
audio, sr0 = torchaudio.load(filename) | |
if sr0 != sr1: | |
audio = audio.to(device) | |
if audio.shape[0] == 2: | |
audio = audio.mean(0).unsqueeze(0) | |
audio = resample(audio, sr0, sr1, device) | |
else: | |
audio = audio.to(device) | |
if audio.shape[0] == 2: | |
audio = audio.mean(0).unsqueeze(0) | |
maxx = audio.abs().max() | |
if maxx > 1: | |
audio /= min(2, maxx) | |
spec = spectrogram_torch( | |
audio, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
spec = spec.to(dtype) | |
if is_v2pro == True: | |
audio = resample(audio, sr1, 16000, device).to(dtype) | |
return spec, audio | |
def clean_text_inf(text, language, version): | |
language = language.replace("all_", "") | |
phones, word2ph, norm_text = clean_text(text, language, version) | |
phones = cleaned_text_to_sequence(phones, version) | |
return phones, word2ph, norm_text | |
dtype = torch.float16 if is_half == True else torch.float32 | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language = language.replace("all_", "") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
splits = { | |
",", | |
"。", | |
"?", | |
"!", | |
",", | |
".", | |
"?", | |
"!", | |
"~", | |
":", | |
":", | |
"—", | |
"…", | |
} | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_phones_and_bert(text, language, version, final=False): | |
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: | |
formattext = text | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
if language == "all_zh": | |
if re.search(r"[A-Za-z]", formattext): | |
formattext = re.sub( | |
r"[a-z]", lambda x: x.group(0).upper(), formattext) | |
formattext = chinese.mix_text_normalize(formattext) | |
return get_phones_and_bert(formattext, "zh", version) | |
else: | |
phones, word2ph, norm_text = clean_text_inf( | |
formattext, language, version) | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
elif language == "all_yue" and re.search(r"[A-Za-z]", formattext): | |
formattext = re.sub( | |
r"[a-z]", lambda x: x.group(0).upper(), formattext) | |
formattext = chinese.mix_text_normalize(formattext) | |
return get_phones_and_bert(formattext, "yue", version) | |
else: | |
phones, word2ph, norm_text = clean_text_inf( | |
formattext, language, version) | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: | |
textlist = [] | |
langlist = [] | |
if language == "auto": | |
for tmp in LangSegmenter.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
elif language == "auto_yue": | |
for tmp in LangSegmenter.getTexts(text): | |
if tmp["lang"] == "zh": | |
tmp["lang"] = "yue" | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
else: | |
for tmp in LangSegmenter.getTexts(text): | |
if tmp["lang"] == "en": | |
langlist.append(tmp["lang"]) | |
else: | |
# 因无法区别中日韩文汉字,以用户输入为准 | |
langlist.append(language) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
bert_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf( | |
textlist[i], lang, version) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
phones_list.append(phones) | |
norm_text_list.append(norm_text) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
phones = sum(phones_list, []) | |
norm_text = "".join(norm_text_list) | |
if not final and len(phones) < 6: | |
return get_phones_and_bert("." + text, language, version, final=True) | |
return phones, bert.to(dtype), norm_text | |
spec_min = -12 | |
spec_max = 2 | |
def norm_spec(x): | |
return (x - spec_min) / (spec_max - spec_min) * 2 - 1 | |
def denorm_spec(x): | |
return (x + 1) / 2 * (spec_max - spec_min) + spec_min | |
def mel_fn(x): return mel_spectrogram_torch( | |
x, | |
**{ | |
"n_fft": 1024, | |
"win_size": 1024, | |
"hop_size": 256, | |
"num_mels": 100, | |
"sampling_rate": 24000, | |
"fmin": 0, | |
"fmax": None, | |
"center": False, | |
}, | |
) | |
def mel_fn_v4(x): return mel_spectrogram_torch( | |
x, | |
**{ | |
"n_fft": 1280, | |
"win_size": 1280, | |
"hop_size": 320, | |
"num_mels": 100, | |
"sampling_rate": 32000, | |
"fmin": 0, | |
"fmax": None, | |
"center": False, | |
}, | |
) | |
def merge_short_text_in_array(texts, threshold): | |
if (len(texts)) < 2: | |
return texts | |
result = [] | |
text = "" | |
for ele in texts: | |
text += ele | |
if len(text) >= threshold: | |
result.append(text) | |
text = "" | |
if len(text) > 0: | |
if len(result) == 0: | |
result.append(text) | |
else: | |
result[len(result) - 1] += text | |
return result | |
sr_model = None | |
def audio_sr(audio, sr): | |
global sr_model | |
if sr_model == None: | |
from tools.audio_sr import AP_BWE | |
try: | |
sr_model = AP_BWE(device, DictToAttrRecursive) | |
except FileNotFoundError: | |
gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好")) | |
return audio.cpu().detach().numpy(), sr | |
return sr_model(audio, sr) | |
# ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature | |
# cache_tokens={}#暂未实现清理机制 | |
cache = {} | |
def get_tts_wav( | |
ref_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
how_to_cut=i18n("不切"), | |
top_k=20, | |
top_p=0.6, | |
temperature=0.6, | |
ref_free=False, | |
speed=1, | |
if_freeze=False, | |
inp_refs=None, | |
sample_steps=8, | |
if_sr=False, | |
pause_second=0.3, | |
): | |
global cache | |
if ref_wav_path: | |
pass | |
else: | |
gr.Warning(i18n("请上传参考音频")) | |
if text: | |
pass | |
else: | |
gr.Warning(i18n("请填入推理文本")) | |
t = [] | |
if prompt_text is None or len(prompt_text) == 0: | |
ref_free = True | |
if model_version in v3v4set: | |
ref_free = False # s2v3暂不支持ref_free | |
else: | |
if_sr = False | |
if model_version not in {"v3", "v4", "v2Pro", "v2ProPlus"}: | |
clean_bigvgan_model() | |
clean_hifigan_model() | |
clean_sv_cn_model() | |
t0 = ttime() | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
if not ref_free: | |
prompt_text = prompt_text.strip("\n") | |
if prompt_text[-1] not in splits: | |
prompt_text += "。" if prompt_language != "en" else "." | |
print(i18n("实际输入的参考文本:"), prompt_text) | |
text = text.strip("\n") | |
# if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
print(i18n("实际输入的目标文本:"), text) | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * pause_second), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
zero_wav_torch = zero_wav_torch.to(device) | |
if not ref_free: | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: | |
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) | |
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
wav16k = torch.from_numpy(wav16k) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state"].transpose(1, 2) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t1 = ttime() | |
t.append(t1 - t0) | |
if how_to_cut == i18n("凑四句一切"): | |
text = cut1(text) | |
elif how_to_cut == i18n("凑50字一切"): | |
text = cut2(text) | |
elif how_to_cut == i18n("按中文句号。切"): | |
text = cut3(text) | |
elif how_to_cut == i18n("按英文句号.切"): | |
text = cut4(text) | |
elif how_to_cut == i18n("按标点符号切"): | |
text = cut5(text) | |
while "\n\n" in text: | |
text = text.replace("\n\n", "\n") | |
print(i18n("实际输入的目标文本(切句后):"), text) | |
texts = text.split("\n") | |
texts = process_text(texts) | |
texts = merge_short_text_in_array(texts, 5) | |
audio_opt = [] | |
# s2v3暂不支持ref_free | |
if not ref_free: | |
phones1, bert1, norm_text1 = get_phones_and_bert( | |
prompt_text, prompt_language, version) | |
for i_text, text in enumerate(texts): | |
# 解决输入目标文本的空行导致报错的问题 | |
if len(text.strip()) == 0: | |
continue | |
if text[-1] not in splits: | |
text += "。" if text_language != "en" else "." | |
print(i18n("实际输入的目标文本(每句):"), text) | |
phones2, bert2, norm_text2 = get_phones_and_bert( | |
text, text_language, version) | |
print(i18n("前端处理后的文本(每句):"), norm_text2) | |
if not ref_free: | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor( | |
phones1 + phones2).to(device).unsqueeze(0) | |
else: | |
bert = bert2 | |
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
t2 = ttime() | |
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature) | |
# print(cache.keys(),if_freeze) | |
if i_text in cache and if_freeze == True: | |
pred_semantic = cache[i_text] | |
else: | |
with torch.no_grad(): | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
None if ref_free else prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
early_stop_num=hz * max_sec, | |
) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) | |
cache[i_text] = pred_semantic | |
t3 = ttime() | |
is_v2pro = model_version in {"v2Pro", "v2ProPlus"} | |
# print(23333,is_v2pro,model_version) | |
# v3不存在以下逻辑和inp_refs | |
if model_version not in v3v4set: | |
refers = [] | |
if is_v2pro: | |
sv_emb = [] | |
if sv_cn_model == None: | |
init_sv_cn() | |
if inp_refs: | |
for path in inp_refs: | |
try: # 这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer | |
refer, audio_tensor = get_spepc( | |
hps, path.name, dtype, device, is_v2pro) | |
refers.append(refer) | |
if is_v2pro: | |
sv_emb.append( | |
sv_cn_model.compute_embedding3(audio_tensor)) | |
except: | |
traceback.print_exc() | |
if len(refers) == 0: | |
refers, audio_tensor = get_spepc( | |
hps, ref_wav_path, dtype, device, is_v2pro) | |
refers = [refers] | |
if is_v2pro: | |
sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)] | |
if is_v2pro: | |
audio = vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed, sv_emb=sv_emb | |
)[0][0] | |
else: | |
audio = vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed | |
)[0][0] | |
else: | |
refer, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device) | |
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0) | |
phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0) | |
fea_ref, ge = vq_model.decode_encp( | |
prompt.unsqueeze(0), phoneme_ids0, refer) | |
ref_audio, sr = torchaudio.load(ref_wav_path) | |
ref_audio = ref_audio.to(device).float() | |
if ref_audio.shape[0] == 2: | |
ref_audio = ref_audio.mean(0).unsqueeze(0) | |
tgt_sr = 24000 if model_version == "v3" else 32000 | |
if sr != tgt_sr: | |
ref_audio = resample(ref_audio, sr, tgt_sr, device) | |
# print("ref_audio",ref_audio.abs().mean()) | |
mel2 = mel_fn( | |
ref_audio) if model_version == "v3" else mel_fn_v4(ref_audio) | |
mel2 = norm_spec(mel2) | |
T_min = min(mel2.shape[2], fea_ref.shape[2]) | |
mel2 = mel2[:, :, :T_min] | |
fea_ref = fea_ref[:, :, :T_min] | |
Tref = 468 if model_version == "v3" else 500 | |
Tchunk = 934 if model_version == "v3" else 1000 | |
if T_min > Tref: | |
mel2 = mel2[:, :, -Tref:] | |
fea_ref = fea_ref[:, :, -Tref:] | |
T_min = Tref | |
chunk_len = Tchunk - T_min | |
mel2 = mel2.to(dtype) | |
fea_todo, ge = vq_model.decode_encp( | |
pred_semantic, phoneme_ids1, refer, ge, speed) | |
cfm_resss = [] | |
idx = 0 | |
while 1: | |
fea_todo_chunk = fea_todo[:, :, idx: idx + chunk_len] | |
if fea_todo_chunk.shape[-1] == 0: | |
break | |
idx += chunk_len | |
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) | |
cfm_res = vq_model.cfm.inference( | |
fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0 | |
) | |
cfm_res = cfm_res[:, :, mel2.shape[2]:] | |
mel2 = cfm_res[:, :, -T_min:] | |
fea_ref = fea_todo_chunk[:, :, -T_min:] | |
cfm_resss.append(cfm_res) | |
cfm_res = torch.cat(cfm_resss, 2) | |
cfm_res = denorm_spec(cfm_res) | |
if model_version == "v3": | |
if bigvgan_model == None: | |
init_bigvgan() | |
else: # v4 | |
if hifigan_model == None: | |
init_hifigan() | |
vocoder_model = bigvgan_model if model_version == "v3" else hifigan_model | |
with torch.inference_mode(): | |
wav_gen = vocoder_model(cfm_res) | |
audio = wav_gen[0][0] # .cpu().detach().numpy() | |
max_audio = torch.abs(audio).max() # 简单防止16bit爆音 | |
if max_audio > 1: | |
audio = audio / max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav_torch) # zero_wav | |
t4 = ttime() | |
t.extend([t2 - t1, t3 - t2, t4 - t3]) | |
t1 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % | |
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))) | |
audio_opt = torch.cat(audio_opt, 0) # np.concatenate | |
if model_version in {"v1", "v2", "v2Pro", "v2ProPlus"}: | |
opt_sr = 32000 | |
elif model_version == "v3": | |
opt_sr = 24000 | |
else: | |
opt_sr = 48000 # v4 | |
if if_sr == True and opt_sr == 24000: | |
print(i18n("音频超分中")) | |
audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr) | |
max_audio = np.abs(audio_opt).max() | |
if max_audio > 1: | |
audio_opt /= max_audio | |
else: | |
audio_opt = audio_opt.cpu().detach().numpy() | |
yield opt_sr, (audio_opt * 32767).astype(np.int16) | |
def run( | |
ref_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
how_to_cut=i18n("不切"), | |
top_k=20, | |
top_p=0.6, | |
temperature=0.6, | |
ref_free=False, | |
speed=1, | |
if_freeze=False, | |
inp_refs=None, | |
sample_steps=8, | |
if_sr=False, | |
pause_second=0.3, | |
uploadParams=None, | |
errCallbackUrl=None | |
): | |
try: | |
result = get_tts_wav( | |
ref_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
how_to_cut, | |
top_k, | |
top_p, | |
temperature, | |
ref_free, | |
speed, | |
if_freeze, | |
inp_refs, | |
sample_steps, | |
if_sr, | |
pause_second, | |
) | |
opt_sr, audio_data = next(result) | |
uploadAudio(opt_sr, audio_data, uploadParams) | |
yield opt_sr, audio_data | |
except Exception as e: | |
errCallback(errCallbackUrl, e) | |
yield 0, None | |
def errCallback(errCallbackUrl, e): | |
print('开始回调', errCallbackUrl) | |
requests.post(errCallbackUrl, data={"error": str(e)}) | |
def uploadAudio(opt_sr, audio_int16, uploadParams): | |
if not uploadParams: | |
return | |
print('上传音频') | |
uploadParams = json.loads(uploadParams) | |
bio = io.BytesIO() | |
write(bio, opt_sr, audio_int16) | |
files = { | |
"file": ("audio.wav", bio.getvalue(), "audio/wav") | |
} | |
url = uploadParams['url'] | |
del uploadParams['url'] | |
response = requests.post(url, files=files, data=uploadParams) | |
print('上传结果', response.json()) | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: # 如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
opts = ["%s" % item for item in inp.strip("。").split("。")] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
opts = re.split(r"(?<!\d)\.(?!\d)", inp.strip(".")) | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
def cut5(inp): | |
inp = inp.strip("\n") | |
punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"} | |
mergeitems = [] | |
items = [] | |
for i, char in enumerate(inp): | |
if char in punds: | |
if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): | |
items.append(char) | |
else: | |
items.append(char) | |
mergeitems.append("".join(items)) | |
items = [] | |
else: | |
items.append(char) | |
if items: | |
mergeitems.append("".join(items)) | |
opt = [item for item in mergeitems if not set(item).issubset(punds)] | |
return "\n".join(opt) | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split("(\d+)", s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
def process_text(texts): | |
_text = [] | |
if all(text in [None, " ", "\n", ""] for text in texts): | |
raise ValueError(i18n("请输入有效文本")) | |
for text in texts: | |
if text in [None, " ", ""]: | |
pass | |
else: | |
_text.append(text) | |
return _text | |
def html_center(text, label="p"): | |
return f"""<div style="text-align: center; margin: 100; padding: 50;"> | |
<{label} style="margin: 0; padding: 0;">{text}</{label}> | |
</div>""" | |
def html_left(text, label="p"): | |
return f"""<div style="text-align: left; margin: 0; padding: 0;"> | |
<{label} style="margin: 0; padding: 0;">{text}</{label}> | |
</div>""" | |
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app: | |
gr.HTML( | |
top_html.format( | |
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") | |
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") | |
), | |
elem_classes="markdown", | |
) | |
with gr.Group(): | |
# gr.Markdown(html_center(i18n("模型切换"), "h3")) | |
# with gr.Row(): | |
# GPT_dropdown = gr.Dropdown( | |
# label=i18n("GPT模型列表"), | |
# choices=sorted(GPT_names, key=custom_sort_key), | |
# value=gpt_path, | |
# interactive=True, | |
# scale=14, | |
# ) | |
# SoVITS_dropdown = gr.Dropdown( | |
# label=i18n("SoVITS模型列表"), | |
# choices=sorted(SoVITS_names, key=custom_sort_key), | |
# value=sovits_path, | |
# interactive=True, | |
# scale=14, | |
# ) | |
# refresh_button = gr.Button( | |
# i18n("刷新模型路径"), variant="primary", scale=14) | |
# refresh_button.click(fn=change_choices, inputs=[], outputs=[ | |
# SoVITS_dropdown, GPT_dropdown]) | |
gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3")) | |
with gr.Row(): | |
with gr.Column(): | |
inp_ref = gr.Audio(label=i18n( | |
"请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13) | |
uploadParams = gr.Textbox(label=i18n("成功结果上传参数"), | |
value="", lines=1, max_lines=1) | |
errCallbackUrl = gr.Textbox(label=i18n("失败回调地址"), | |
value="", lines=1, max_lines=1) | |
with gr.Column(scale=13): | |
ref_text_free = gr.Checkbox( | |
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。") | |
+ i18n("v3暂不支持该模式,使用了会报错。"), | |
value=False, | |
interactive=True if model_version not in v3v4set else False, | |
show_label=True, | |
scale=1, | |
) | |
gr.Markdown( | |
html_left( | |
i18n("使用无参考文本模式时建议使用微调的GPT") | |
+ "<br>" | |
+ i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。") | |
) | |
) | |
prompt_text = gr.Textbox(label=i18n( | |
"参考音频的文本"), value="", lines=6, max_lines=6, scale=1) | |
with gr.Column(scale=14): | |
prompt_language = gr.Dropdown( | |
label=i18n("参考音频的语种"), | |
choices=list(dict_language.keys()), | |
value=i18n("中文"), | |
) | |
inp_refs = ( | |
gr.File( | |
label=i18n( | |
"可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。" | |
), | |
file_count="multiple", | |
) | |
if model_version not in v3v4set | |
else gr.File( | |
label=i18n( | |
"可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。" | |
), | |
file_count="multiple", | |
visible=False, | |
) | |
) | |
sample_steps = ( | |
gr.Radio( | |
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"), | |
value=32 if model_version == "v3" else 8, | |
choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [ | |
4, 8, 16, 32], | |
visible=True, | |
) | |
if model_version in v3v4set | |
else gr.Radio( | |
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"), | |
choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [ | |
4, 8, 16, 32], | |
visible=False, | |
value=32 if model_version == "v3" else 8, | |
) | |
) | |
if_sr_Checkbox = gr.Checkbox( | |
label=i18n("v3输出如果觉得闷可以试试开超分"), | |
value=False, | |
interactive=True, | |
show_label=True, | |
visible=False if model_version != "v3" else True, | |
) | |
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3")) | |
with gr.Row(): | |
with gr.Column(scale=13): | |
text = gr.Textbox(label=i18n("需要合成的文本"), | |
value="", lines=26, max_lines=26) | |
with gr.Column(scale=7): | |
text_language = gr.Dropdown( | |
label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"), | |
choices=list(dict_language.keys()), | |
value=i18n("中文"), | |
scale=1, | |
) | |
how_to_cut = gr.Dropdown( | |
label=i18n("怎么切"), | |
choices=[ | |
i18n("不切"), | |
i18n("凑四句一切"), | |
i18n("凑50字一切"), | |
i18n("按中文句号。切"), | |
i18n("按英文句号.切"), | |
i18n("按标点符号切"), | |
], | |
value=i18n("凑四句一切"), | |
interactive=True, | |
scale=1, | |
) | |
gr.Markdown(value=html_center(i18n("语速调整,高为更快"))) | |
if_freeze = gr.Checkbox( | |
label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), | |
value=False, | |
interactive=True, | |
show_label=True, | |
scale=1, | |
) | |
with gr.Row(): | |
speed = gr.Slider( | |
minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1 | |
) | |
pause_second_slider = gr.Slider( | |
minimum=0.1, | |
maximum=0.5, | |
step=0.01, | |
label=i18n("句间停顿秒数"), | |
value=0.3, | |
interactive=True, | |
scale=1, | |
) | |
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):"))) | |
top_k = gr.Slider( | |
minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1 | |
) | |
top_p = gr.Slider( | |
minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1 | |
) | |
temperature = gr.Slider( | |
minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1 | |
) | |
# with gr.Column(): | |
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。")) | |
# phoneme=gr.Textbox(label=i18n("音素框"), value="") | |
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary") | |
with gr.Row(): | |
inference_button = gr.Button(value=i18n( | |
"合成语音"), variant="primary", size="lg", scale=25) | |
output = gr.Audio(label=i18n("输出的语音"), scale=14) | |
inference_button.click( | |
run, | |
[ | |
inp_ref, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
how_to_cut, | |
top_k, | |
top_p, | |
temperature, | |
ref_text_free, | |
speed, | |
if_freeze, | |
inp_refs, | |
sample_steps, | |
if_sr_Checkbox, | |
pause_second_slider, | |
uploadParams, | |
errCallbackUrl | |
], | |
[output], | |
) | |
# SoVITS_dropdown.change( | |
# change_sovits_weights, | |
# [SoVITS_dropdown, prompt_language, text_language], | |
# [ | |
# prompt_language, | |
# text_language, | |
# prompt_text, | |
# prompt_language, | |
# text, | |
# text_language, | |
# sample_steps, | |
# inp_refs, | |
# ref_text_free, | |
# if_sr_Checkbox, | |
# inference_button, | |
# ], | |
# ) | |
# GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) | |
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) | |
# with gr.Row(): | |
# text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") | |
# button1 = gr.Button(i18n("凑四句一切"), variant="primary") | |
# button2 = gr.Button(i18n("凑50字一切"), variant="primary") | |
# button3 = gr.Button(i18n("按中文句号。切"), variant="primary") | |
# button4 = gr.Button(i18n("按英文句号.切"), variant="primary") | |
# button5 = gr.Button(i18n("按标点符号切"), variant="primary") | |
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="") | |
# button1.click(cut1, [text_inp], [text_opt]) | |
# button2.click(cut2, [text_inp], [text_opt]) | |
# button3.click(cut3, [text_inp], [text_opt]) | |
# button4.click(cut4, [text_inp], [text_opt]) | |
# button5.click(cut5, [text_inp], [text_opt]) | |
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))) | |
if __name__ == "__main__": | |
app.launch() | |