File size: 16,345 Bytes
10e9b7d
cd40d80
330575e
c3c7328
92047ee
1db7a1e
 
c3c7328
84992c5
 
c3c7328
3985578
 
c3c7328
 
 
 
1db7a1e
141a778
24cefc3
b228ff5
 
 
 
c3c7328
 
b228ff5
2eb3b6b
46328b5
 
f155133
 
2eb3b6b
84992c5
 
c3c7328
 
 
 
84992c5
 
 
c3c7328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
3985578
c3c7328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
c3c7328
84992c5
c3c7328
 
 
 
 
 
 
 
 
84992c5
c3c7328
 
 
 
 
 
 
 
84992c5
c3c7328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3985578
 
84992c5
c3c7328
84992c5
c3c7328
84992c5
c3c7328
 
84992c5
 
 
 
c3c7328
 
 
 
 
 
 
 
 
 
84992c5
c3c7328
84992c5
 
c3c7328
 
 
 
 
84992c5
c3c7328
2eb3b6b
84992c5
c3c7328
84992c5
14783cd
84992c5
c3c7328
b9deb15
3de01f5
1b95339
 
 
 
 
 
 
 
 
 
 
 
 
 
a07e966
 
 
c3c7328
a07e966
 
 
1b95339
a07e966
c3c7328
f155133
1b95339
84992c5
 
1b95339
84992c5
 
24cefc3
 
 
 
a37281a
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
#from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
from langchain_community.llms import HfApiModel


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

#Load environment variables
load_dotenv()




#from smolagents import Tool
#from langchain_community.document_loaders import WikipediaLoader

class WikiSearchTool(Tool):
    name = "wiki_search"
    description = "Search Wikipedia for a query and return up to 2 results."
    inputs = {
        "query": {"type": "string", "description": "The search term for Wikipedia."}
    }
    output_type = "string"

    def forward(self, query: str) -> str:
        search_docs = WikipediaLoader(query=query, load_max_docs=2).load()

        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
                for doc in search_docs
            ]
        )
        return formatted_search_docs

    


class StringReverseTool(Tool):
    name = "reverse_message"
    description = "When you received a strange text, try to reverse it and perform action described in reversed message."
    inputs = {
        "message": {
            "type": "string",
            "description": "A message, which looks like strange and can be reversed to get actions to execute."
        }
    }
    output_type = "string"

    def __init__(self):
        return

    def forward(self, message: str):
        return message[::-1]

class KeywordsExtractorTool(Tool):
    """Extracts top 5 keywords from a given text based on frequency."""

    name = "keywords_extractor"
    description = "This tool returns the 5 most frequent keywords occur in provided block of text."

    inputs = {
        "text": {
            "type": "string",
            "description": "Text to analyze for keywords.",
        }
    }
    output_type = "string"

    def forward(self, text: str) -> str:
        try:
            all_words = re.findall(r'\b\w+\b', text.lower())
            conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'}
            filtered_words = []
            for w in all_words:
                if w not in conjunctions:
                    filtered_words.push(w)
            word_counts = Counter(filtered_words)
            k = 5
            return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1])
        except Exception as e:
            return f"Error during extracting most common words: {e}"

@tool
def parse_excel_to_json(task_id: str) -> dict:
    """
    For a given task_id fetch and parse an Excel file and save parsed data in structured JSON file.
    Args:
        task_id: An task ID to fetch.
        
    Returns:
        {
            "task_id": str,
            "sheets": {
                "SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
                ...
            },
            "status": "Success" | "Error"
        }
    """
    url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"

    try:
        response = requests.get(url, timeout=100)
        if response.status_code != 200:
            return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"}

        xls_content = pd.ExcelFile(BytesIO(response.content))
        json_sheets = {}

        for sheet in xls_content.sheet_names:
            df = xls_content.parse(sheet)
            df = df.dropna(how="all")  
            rows = df.head(20).to_dict(orient="records")
            json_sheets[sheet] = rows

        return {
            "task_id": task_id,
            "sheets": json_sheets,
            "status": "Success"
        }

    except Exception as e:
        return {
            "task_id": task_id,
            "sheets": {},
            "status": f"Error in parsing Excel file: {str(e)}"
        }



class VideoTranscriptionTool(Tool):
    """Fetch transcripts from YouTube videos"""
    name = "transcript_video"
    description = "Fetch text transcript from YouTube movies with optional timestamps"
    inputs = {
        "url": {"type": "string", "description": "YouTube video URL or ID"},
        "include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True}
    }
    output_type = "string"

    def forward(self, url: str, include_timestamps: bool = False) -> str:

        if "youtube.com/watch" in url:
            video_id = url.split("v=")[1].split("&")[0]
        elif "youtu.be/" in url:
            video_id = url.split("youtu.be/")[1].split("?")[0]
        elif len(url.strip()) == 11:  # Direct ID
            video_id = url.strip()
        else:
            return f"YouTube URL or ID: {url} is invalid!"

        try:
            transcription = YouTubeTranscriptApi.get_transcript(video_id)

            if include_timestamps:
                formatted_transcription = []
                for part in transcription:
                    timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
                    formatted_transcription.append(f"[{timestamp}] {part['text']}")
                return "\n".join(formatted_transcription)
            else:
                return " ".join([part['text'] for part in transcription])

        except Exception as e:
            return f"Error in extracting YouTube transcript: {str(e)}"

class BasicAgent:
    def __init__(self):
        token = os.environ.get("HF_API_TOKEN")
        self.model = HfApiModel(
            "google/gemini-2.5-flash",
            temperature=0.1,
            token=token
        )

        search_tool = DuckDuckGoSearchTool()
        wiki_search_tool = WikiSearchTool()
        str_reverse_tool = StringReverseTool()
        keywords_extract_tool = KeywordsExtractorTool()
        speech_to_text_tool = SpeechToTextTool()
        visit_webpage_tool = VisitWebpageTool()
        final_answer_tool = FinalAnswerTool()
        video_transcription_tool = VideoTranscriptionTool()

        system_prompt = f"""
You are my general AI assistant. Your task is to answer the question I asked.
First, provide an explanation of your reasoning, step by step, to arrive at the answer.
Then, return your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]".
[YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question.
If the answer is a number, do not use commas or units (e.g., $, %) unless specified.
If the answer is a string, do not use articles or abbreviations (e.g., for cities), and write digits in plain text unless specified.
If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string.
"""

        self.agent = CodeAgent(
            model=self.model,
            tools=[search_tool, wiki_search_tool, str_reverse_tool, keywords_extract_tool, speech_to_text_tool, visit_webpage_tool, final_answer_tool, parse_excel_to_json, video_transcription_tool],
            add_base_tools=True
        )
        self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        answer = self.agent.run(question)
        print(f"Agent returning answer: {answer}")
        return answer

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)