Spaces:
Sleeping
Sleeping
File size: 19,802 Bytes
f18e2ca cd40d80 330575e 4aa21d9 9f6f7ea 4aa21d9 b228ff5 28a1f20 4aa21d9 11e780b 48b54cf 8a89d81 2234779 11e780b c762e0c 4aa21d9 11e780b 48b54cf 11e780b d4165c4 4aa21d9 c762e0c 11e780b d224c1a 1e4945c 48b54cf 1e4945c 4aa21d9 d224c1a 46ff440 48b54cf 4aa21d9 11e780b 2234779 ac2433e 48b54cf 2234779 48b54cf d224c1a 11e780b 48b54cf 11e780b 4aa21d9 f18e2ca 4aa21d9 2234779 4aa21d9 2234779 4aa21d9 2234779 4aa21d9 2234779 4aa21d9 2234779 4aa21d9 28a1f20 14783cd f18e2ca 2234779 46ff440 bfaea4a 46ff440 4aa21d9 f005d9a 4aa21d9 c762e0c 2234779 f005d9a c762e0c 5001e6b f005d9a 46ff440 4aa21d9 bfaea4a 4aa21d9 2234779 4aa21d9 ac2433e 28a1f20 994ef93 f18e2ca 9f6f7ea 994ef93 4aa21d9 9f6f7ea 28a1f20 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#Load environment variables
load_dotenv()
import io
import contextlib
import traceback
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# from smolagents import Tool, CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel # These are already imported above
class CodeLlamaTool(Tool):
name = "code_llama_tool"
description = "Solves reasoning/code questions using Meta Code Llama 7B Instruct"
inputs = {
"question": {
"type": "string",
"description": "The question requiring code-based or reasoning-based solution"
}
}
output_type = "string"
def __init__(self):
self.model_id = "codellama/CodeLlama-7b-Instruct-hf"
token = os.getenv("HF_TOKEN")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
device_map="auto",
torch_dtype="auto",
token=token
)
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=256, # 512
temperature=0.0,
truncation=True
)
def forward(self, question: str) -> str:
# Corrected: Use self.prompt and then pass it to the pipeline
self.prompt = f"""You are an AI that uses Python code to answer questions.
Question: {question}
Instructions:
- If solving requires code, use a block like <tool>code</tool>.
- Always end with <final>FINAL ANSWER</final> containing the final number or string.
Example:
Question: What is 5 * sqrt(36)?
Answer:
<tool>
import math
print(5 * math.sqrt(36))
</tool>
<final>30.0</final>
Answer:"""
response = self.pipeline(self.prompt)[0]["generated_text"] # Pass self.prompt
return self.parse_and_execute(response)
def parse_and_execute(self, response: str) -> str:
try:
# Extract and run code if exists
if "<tool>" in response and "</tool>" in response:
code = response.split("<tool>")[1].split("</tool>")[0].strip()
result = self._run_code(code)
return f"FINAL ANSWER (code output): {result}"
# Extract final result directly
elif "<final>" in response and "</final>" in response:
final = response.split("<final>")[1].split("</final>")[0].strip()
return f"FINAL ANSWER: {final}"
return f"Could not extract final answer.\n\n{response}"
except Exception as e:
return f"Error in parse_and_execute: {str(e)}\n\nFull response:\n{response}"
def _run_code(self, code: str) -> str:
buffer = io.StringIO()
try:
with contextlib.redirect_stdout(buffer):
exec(code, {})
return buffer.getvalue().strip()
except Exception:
return f"Error executing code:\n{traceback.format_exc()}"
class WikiSearchTool(Tool):
name = "wiki_search"
description = "Search Wikipedia for a query and return up to 2 results."
inputs = {
"query": {"type": "string", "description": "The search term for Wikipedia."}
}
output_type = "string"
def forward(self, query: str) -> str:
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return formatted_search_docs
class StringReverseTool(Tool):
name = "reverse_message"
description = "When you received a strange text, try to reverse it and perform action described in reversed message."
inputs = {
"message": {
"type": "string",
"description": "A message, which looks like strange and can be reversed to get actions to execute."
}
}
output_type = "string"
def __init__(self):
return
def forward(self, message: str):
return message[::-1]
class KeywordsExtractorTool(Tool):
"""Extracts top 5 keywords from a given text based on frequency."""
name = "keywords_extractor"
description = "This tool returns the 5 most frequent keywords occur in provided block of text."
inputs = {
"text": {
"type": "string",
"description": "Text to analyze for keywords.",
}
}
output_type = "string"
def forward(self, text: str) -> str:
try:
all_words = re.findall(r'\b\w+\b', text.lower())
conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'}
filtered_words = []
for w in all_words:
if w not in conjunctions:
filtered_words.append(w) # Corrected: Use append instead of push
word_counts = Counter(filtered_words)
k = 5
return str(heapq.nlargest(k, word_counts.items(), key=lambda x: x[1])) # Corrected: Convert list of tuples to string
except Exception as e:
return f"Error during extracting most common words: {e}"
@tool
def parse_excel_to_json(task_id: str) -> dict:
"""
For a given task_id fetch and parse an Excel file and save parsed data in structured JSON file.
Args:
task_id: An task ID to fetch.
Returns:
{
"task_id": str,
"sheets": {
"SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
...
},
"status": "Success" | "Error"
}
"""
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
try:
response = requests.get(url, timeout=100)
if response.status_code != 200:
return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"}
xls_content = pd.ExcelFile(BytesIO(response.content))
json_sheets = {}
for sheet in xls_content.sheet_names:
df = xls_content.parse(sheet)
df = df.dropna(how="all")
rows = df.head(20).to_dict(orient="records")
json_sheets[sheet] = rows
return {
"task_id": task_id,
"sheets": json_sheets,
"status": "Success"
}
except Exception as e:
return {
"task_id": task_id,
"sheets": {},
"status": f"Error in parsing Excel file: {str(e)}"
}
class VideoTranscriptionTool(Tool):
"""Fetch transcripts from YouTube videos"""
name = "transcript_video"
description = "Fetch text transcript from YouTube movies with optional timestamps"
inputs = {
"url": {"type": "string", "description": "YouTube video URL or ID"},
"include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True}
}
output_type = "string"
def forward(self, url: str, include_timestamps: bool = False) -> str:
# Corrected: Handle various YouTube URL formats
video_id = None
if "youtube.com/watch?v=" in url:
video_id = url.split("v=")[1].split("&")[0]
elif "youtu.be/" in url:
video_id = url.split("youtu.be/")[1].split("?")[0]
elif len(url.strip()) == 11 and not ("http://" in url or "https://" in url): # Direct ID
video_id = url.strip()
if not video_id:
return f"YouTube URL or ID: {url} is invalid or not supported!"
try:
transcription = YouTubeTranscriptApi.get_transcript(video_id)
if include_timestamps:
formatted_transcription = []
for part in transcription:
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
formatted_transcription.append(f"[{timestamp}] {part['text']}")
return "\n".join(formatted_transcription)
else:
return " ".join([part['text'] for part in transcription])
except Exception as e:
return f"Error in extracting YouTube transcript: {str(e)}"
class BasicAgent:
def __init__(self):
token = os.environ.get("HF_TOKEN") # Corrected: Use HF_TOKEN
# Initialize tokenizer
self.model_id = "codellama/CodeLlama-7b-Instruct-hf"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token)
# Model (e.g., HfApiModel or other)
self.model = HfApiModel(
model=self.model_id,
temperature=0.0,
token=token
)
# Existing tools
search_tool = DuckDuckGoSearchTool()
wiki_search_tool = WikiSearchTool()
str_reverse_tool = StringReverseTool()
keywords_extract_tool = KeywordsExtractorTool()
speech_to_text_tool = SpeechToTextTool()
visit_webpage_tool = VisitWebpageTool()
final_answer_tool = FinalAnswerTool()
video_transcription_tool = VideoTranscriptionTool()
# New Llama Tool
code_llama_tool = CodeLlamaTool()
self.system_prompt = f"""
You are my general AI assistant. Your task is to answer the question I asked.
First, provide reasoning. Then return: FINAL ANSWER: [your answer].
Answer should be a short string, number, or comma-separated list. Keep it brief.
"""
self.agent = CodeAgent(
model=self.model,
tools=[
search_tool, wiki_search_tool, str_reverse_tool,
keywords_extract_tool, speech_to_text_tool,
visit_webpage_tool, final_answer_tool,
parse_excel_to_json, video_transcription_tool,
code_llama_tool
],
add_base_tools=True
)
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + self.system_prompt
def _build_safe_prompt(self, history: str, question: str, max_total_tokens=32768, reserve_for_output=2048):
max_input_tokens = max_total_tokens - reserve_for_output
full_prompt = f"{self.system_prompt}\n{history}\nQuestion: {question}"
tokenized = self.tokenizer(full_prompt, truncation=True, max_length=max_input_tokens, return_tensors="pt")
return self.tokenizer.decode(tokenized["input_ids"][0])
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
history = "" # could be conversation history, if available
safe_prompt = self._build_safe_prompt(history, question)
answer = self.agent.run(safe_prompt)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |