Spaces:
Sleeping
Sleeping
File size: 7,045 Bytes
03aebad 836d49c 26f5620 cd8de6f cdbcd7d 26f5620 e7e6762 cdbcd7d 26f5620 cd8de6f cdbcd7d 26f5620 2d14e5a 052f7ef cdbcd7d 450a49d cdbcd7d fe25c9a 3970176 cdbcd7d fe25c9a cdbcd7d fe25c9a cdbcd7d fe25c9a cdbcd7d fe25c9a cdbcd7d fe25c9a cdbcd7d 7b1f7dd 26f5620 cdbcd7d 26f5620 cdbcd7d 26f5620 cdbcd7d 7df3234 26f5620 cdbcd7d 9af2eae cdbcd7d 26f5620 7240bca cdbcd7d f03d005 26f5620 cdbcd7d 26f5620 1dfef0f 26f5620 cdbcd7d 95010ac 26f5620 dd8df2c cdbcd7d 65f51b7 cdbcd7d 94dcdd5 0db0aa5 94e7570 dd8df2c cdbcd7d 9b810cb cdbcd7d ab6c455 cdbcd7d ab6c455 26f5620 cdbcd7d ab6c455 26f5620 ab6c455 cdbcd7d 7622d0c ab6c455 cdbcd7d ab6c455 7240bca ab6c455 26f5620 ab6c455 e7e6762 cdbcd7d e7e6762 cdbcd7d ad00d9c cdbcd7d 7622d0c cdbcd7d 7622d0c cdbcd7d 7622d0c cdbcd7d 23ba2f5 cdbcd7d dd8df2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "huggingface", huggingface_model: str = "mistral"):
"""Build the graph"""
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
google_api_key=os.getenv("GOOGLE_API_KEY")
)
elif provider == "huggingface":
# Choose between supported Hugging Face models
if huggingface_model == "mistral":
model_url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1"
elif huggingface_model == "llama":
model_url = "https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf"
else:
raise ValueError("Unsupported Hugging Face model")
hf_token = os.getenv("HUGGINGFACE_API_TOKEN")
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token else {}
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url=model_url,
temperature=0,
headers=headers
)
)
else:
raise ValueError("Invalid provider. Choose 'google' or 'huggingface'.")
return llm
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
return llm_with_tools
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="groq")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|