File size: 25,819 Bytes
10e9b7d
2eb3b6b
cd40d80
330575e
92047ee
84992c5
 
3985578
 
2eb3b6b
 
 
 
 
51e50b5
 
2eb3b6b
84992c5
2eb3b6b
24cefc3
b228ff5
 
 
 
 
2eb3b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
2eb3b6b
84992c5
2eb3b6b
 
84992c5
 
 
2eb3b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
3985578
2eb3b6b
 
 
84992c5
 
2eb3b6b
 
 
 
 
 
 
 
 
 
 
84992c5
2eb3b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
2eb3b6b
 
3985578
2eb3b6b
 
 
 
 
 
 
3985578
84992c5
2eb3b6b
84992c5
2eb3b6b
84992c5
2eb3b6b
 
84992c5
 
 
 
 
2eb3b6b
 
 
 
 
 
 
 
 
 
 
 
84992c5
 
2eb3b6b
 
 
 
84992c5
2eb3b6b
 
 
 
 
 
1613768
2eb3b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
2eb3b6b
 
84992c5
2eb3b6b
14783cd
84992c5
2eb3b6b
 
 
 
3985578
2eb3b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84992c5
2eb3b6b
 
 
84992c5
 
2eb3b6b
 
84992c5
 
24cefc3
 
 
 
 
a37281a
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import os
import re
import gradio as gr
import requests
import pandas as pd
import heapq
from collections import Counter
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from langchain_community.document_loaders import WikipediaLoader, PyPDFLoader, TextLoader
from dotenv import load_dotenv
import tempfile
import mimetypes


# --- Load environment variables ---
load_dotenv()
HF_API_TOKEN = os.getenv("HF_API_TOKEN")

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"



# --- Utility Functions ---
def extract_youtube_id(url: str) -> str:
    """Extract YouTube ID from various URL formats"""
    patterns = [
        r'(?:https?:\/\/)?(?:www\.)?youtube\.com\/watch\?v=([^&]+)',
        r'(?:https?:\/\/)?youtu\.be\/([^?]+)',
        r'([a-zA-Z0-9_-]{11})'  # Catches just the ID if provided directly
    ]
    for pattern in patterns:
        match = re.search(pattern, url)
        if match:
            return match.group(1)
    return ""

# --- Enhanced Tools ---
class WikiSearchTool(Tool):
    """Enhanced Wikipedia search with better formatting and error handling"""
    name = "wiki_search"
    description = "Search Wikipedia for a query. Returns up to 2 results with metadata."
    inputs = {"query": {"type": "string", "description": "Search term for Wikipedia"}}
    output_type = "string"

    def forward(self, query: str) -> str:
        try:
            logger.info(f"Searching Wikipedia for: {query}")
            docs = WikipediaLoader(query=query, load_max_docs=2).load()
            if not docs:
                logger.info(f"No Wikipedia articles found for: {query}")
                return "No Wikipedia articles found."
                
            formatted_results = []
            for i, doc in enumerate(docs):
                # Limit page content length to avoid overwhelming the model, but provide enough context
                summary = doc.page_content[:1000] + "..." if len(doc.page_content) > 1000 else doc.page_content
                formatted_results.append(
                    f"--- Wikipedia Result {i+1} ---\n"
                    f"Title: {doc.metadata.get('title', 'N/A')}\n"
                    f"URL: {doc.metadata.get('source', 'N/A')}\n"
                    f"Summary: {summary}\n"
                )
            return "\n\n".join(formatted_results)
        except Exception as e:
            logger.error(f"Wikipedia search error for '{query}': {e}")
            return f"Wikipedia search error: {str(e)}"

class FileAnalysisTool(Tool):
    """Universal file analyzer for text/PDF/Excel files"""
    name = "file_analysis"
    description = "Analyze text, PDF, and Excel files. Returns extracted content."
    inputs = {"file_path": {"type": "string", "description": "Path to the local file"}}
    output_type = "string"

    def forward(self, file_path: str) -> str:
        if not os.path.exists(file_path):
            return f"File not found: {file_path}"

        try:
            mime_type, _ = mimetypes.guess_type(file_path)
            logger.info(f"Analyzing file: {file_path} with MIME type: {mime_type}")
            
            if mime_type == "application/pdf":
                return self._process_pdf(file_path)
            elif mime_type in ["application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel"]:
                return self._process_excel(file_path)
            elif mime_type and ("text" in mime_type or "csv" in mime_type):
                return self._process_text(file_path)
            else:
                return f"Unsupported file type for analysis: {mime_type}. Only PDF, Excel, and text/CSV files are supported."
        except Exception as e:
            logger.error(f"File analysis error for '{file_path}': {e}")
            return f"File analysis error: {str(e)}"

    def _process_pdf(self, path: str) -> str:
        loader = PyPDFLoader(path)
        docs = loader.load()
        content = "\n\n".join([doc.page_content for doc in docs])
        # Truncate to avoid excessive token usage, provide a warning if truncated
        if len(content) > 8000:
            logger.warning(f"PDF content truncated from {len(content)} to 8000 characters for {path}")
            return content[:8000] + "\n... [Content truncated]"
        return content

    def _process_excel(self, path: str) -> str:
        df = pd.read_excel(path)
        # Provide a sample of the data and its basic info
        info = BytesIO()
        df.info(buf=info)
        info_str = info.getvalue().decode('utf-8')
        
        return (f"Excel file loaded. First 10 rows:\n{df.head(10).to_markdown()}\n\n"
                f"DataFrame Info:\n{info_str}")

    def _process_text(self, path: str) -> str:
        with open(path, 'r', encoding='utf-8') as f:
            content = f.read()
            if len(content) > 8000:
                logger.warning(f"Text file content truncated from {len(content)} to 8000 characters for {path}")
                return content[:8000] + "\n... [Content truncated]"
            return content

class VideoTranscriptionTool(Tool):
    """Enhanced YouTube transcription with multilingual support and better output"""
    name = "transcript_video"
    description = "Fetch YouTube video transcripts with optional timestamps. Supports English, French, Spanish, German."
    inputs = {
        "url": {"type": "string", "description": "YouTube URL or ID"},
        "include_timestamps": {"type": "boolean", "description": "Include timestamps? (default: False)"}
    }
    output_type = "string"

    def forward(self, url: str, include_timestamps: bool = False) -> str:
        try:
            video_id = extract_youtube_id(url)
            if not video_id:
                return "Invalid YouTube URL or ID format. Please provide a valid YouTube URL or an 11-character video ID."
                
            logger.info(f"Attempting to transcribe video ID: {video_id}")
            transcript = YouTubeTranscriptApi.get_transcript(
                video_id, 
                languages=['en', 'fr', 'es', 'de']  # Prioritize common languages
            )
            
            if not transcript:
                return f"No transcript found for video ID: {video_id} in supported languages (en, fr, es, de)."

            if include_timestamps:
                formatted_transcript = "\n".join(
                    f"[{int(seg['start']//60):02d}:{int(seg['start']%60):02d}] {seg['text']}"
                    for seg in transcript
                )
            else:
                formatted_transcript = " ".join(seg['text'] for seg in transcript)
            
            return formatted_transcript
        except Exception as e:
            logger.error(f"Transcription error for '{url}': {e}")
            return f"Transcription error: {str(e)}. This might be due to no available transcript or an unsupported video."

class DataAnalysisTool(Tool):
    """Perform data analysis using pandas on structured data (CSV/Excel)"""
    name = "data_analysis"
    description = "Analyze CSV/Excel data using pandas operations. Supported operations: 'describe', 'groupby:column:aggfunc' (e.g., 'groupby:Category:mean')."
    inputs = {
        "file_path": {"type": "string", "description": "Path to the local data file (CSV or Excel)"},
        "operation": {"type": "string", "description": "Pandas operation (e.g., 'describe', 'groupby:column_name:mean')"}
    }
    output_type = "string"

    def forward(self, file_path: str, operation: str) -> str:
        if not os.path.exists(file_path):
            return f"File not found: {file_path}"

        try:
            if file_path.endswith('.csv'):
                df = pd.read_csv(file_path)
            elif file_path.endswith('.xlsx') or file_path.endswith('.xls'):
                df = pd.read_excel(file_path)
            else:
                return "Unsupported file format for data analysis. Please provide a .csv or .xlsx file."
            
            logger.info(f"Performing data analysis operation '{operation}' on {file_path}")

            if operation == "describe":
                return "Descriptive Statistics:\n" + str(df.describe())
            elif operation.startswith("groupby:"):
                parts = operation.split(":")
                if len(parts) == 3:
                    _, col, agg = parts
                    if col not in df.columns:
                        return f"Column '{col}' not found in the DataFrame."
                    try:
                        result = df.groupby(col).agg(agg)
                        return f"Groupby operation '{agg}' on column '{col}':\n" + str(result)
                    except Exception as agg_e:
                        return f"Error performing aggregation '{agg}' on column '{col}': {str(agg_e)}"
                else:
                    return "Invalid 'groupby' operation format. Use 'groupby:column_name:agg_function'."
            else:
                return "Unsupported operation. Try: 'describe' or 'groupby:column_name:agg_function'."
        except Exception as e:
            logger.error(f"Data analysis error for '{file_path}' with operation '{operation}': {e}")
            return f"Data analysis error: {str(e)}. Please check file content and operation."

# --- Agent Initialization ---
class BasicAgent:
    def __init__(self):
        self.model = HfApiModel(
            temperature=0.0, # Slightly increased temperature for more creative responses if appropriate
            token=HF_API_TOKEN,
            max_tokens=2000
        )
        
        self.tools = self._initialize_tools()
        self.agent = self._create_agent()
        
    def _initialize_tools(self) -> list:
        """Initialize all tools with enhanced capabilities"""
        return [
            DuckDuckGoSearchTool(),
            WikiSearchTool(),
            VisitWebpageTool(),
            SpeechToTextTool(), # Might be less relevant for a text-based research agent but kept if needed
            FinalAnswerTool(),
            VideoTranscriptionTool(),
            FileAnalysisTool(),
            DataAnalysisTool(),
            self._create_excel_download_tool(), # Renamed for clarity
            self._create_keywords_tool()
        ]
    
    def _create_excel_download_tool(self):
        """Tool to download and parse Excel files from a specific URL"""
        @tool
        def download_and_parse_excel(task_id: str) -> dict:
            """
            Downloads an Excel file from a predefined URL using a task_id and parses its content.
            Returns a dictionary with status and data (first 20 rows).
            """
            try:
                url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
                logger.info(f"Attempting to download Excel from: {url}")
                response = requests.get(url, timeout=60) # Increased timeout for larger files
                response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
                
                with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
                    tmp.write(response.content)
                    temp_file_path = tmp.name
                
                df = pd.read_excel(temp_file_path)
                os.unlink(temp_file_path) # Clean up the temporary file

                logger.info(f"Successfully downloaded and parsed Excel for task_id: {task_id}")
                return {
                    "task_id": task_id,
                    "data_sample": df.head(10).to_dict(orient="records"), # Reduced to 10 for conciseness
                    "status": "Success",
                    "columns": df.columns.tolist(), # Added column names for context
                    "shape": df.shape # Added shape for context
                }
            except requests.exceptions.RequestException as req_err:
                logger.error(f"Network or HTTP error downloading Excel for task_id '{task_id}': {req_err}")
                return {"status": f"Download error: {str(req_err)}"}
            except Exception as e:
                logger.error(f"Error parsing Excel for task_id '{task_id}': {e}")
                return {"status": f"Parsing error: {str(e)}"}
        return download_and_parse_excel
    
    def _create_keywords_tool(self):
        """Keywords extractor with TF-IDF like scoring (basic frequency for now)"""
        @tool
        def extract_keywords(text: str, top_n: int = 5) -> list:
            """
            Extracts the most frequent keywords from a given text, excluding common stopwords.
            Args:
                text (str): The input text to extract keywords from.
                top_n (int): The number of top keywords to return.
            Returns:
                list: A list of the most frequent keywords.
            """
            if not text:
                return []
            
            # Use a more comprehensive list of English stopwords
            stopwords = set([
                "a", "an", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it",
                "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these",
                "they", "this", "to", "was", "will", "with", "he", "she", "it's", "i", "we", "you", "my",
                "your", "our", "us", "him", "her", "his", "hers", "its", "them", "their", "what", "when",
                "where", "why", "how", "which", "who", "whom", "can", "could", "would", "should", "may",
                "might", "must", "have", "has", "had", "do", "does", "did", "am", "are", "is", "were", "been",
                "being", "from", "up", "down", "out", "off", "over", "under", "again", "further", "then",
                "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few",
                "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so",
                "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now"
            ])
            
            words = re.findall(r'\b\w+\b', text.lower()) # Relaxed regex to capture all words
            filtered = [w for w in words if w not in stopwords and len(w) > 2] # Filter words less than 3 chars
            counter = Counter(filtered)
            return [word for word, _ in counter.most_common(top_n)]
        return extract_keywords

    def _create_agent(self) -> CodeAgent:
        """Create agent with improved system prompt"""
        system_prompt = """
You are an advanced, helpful, and highly analytical research assistant. Your goal is to provide accurate, comprehensive, and well-structured answers to user queries, leveraging all available tools efficiently.

**Follow this robust process:**

1.  **Understand the User's Need:** Carefully analyze the user's question, including any attached files or specific requests (e.g., "summarize," "analyze data," "find facts").
2.  **Formulate a Detailed Plan:** Before acting, create a clear, step-by-step plan. This plan should outline:
    * What information needs to be gathered.
    * Which tools are most appropriate for each step (e.g., `duckduckgo_search` for general web search, `wiki_search` for encyclopedic facts, `transcript_video` for YouTube, `file_analysis` or `data_analysis` for local files).
    * How you will combine information from different sources.
    * How you will verify or synthesize the findings.
3.  **Execute the Plan Using Tools:** Call the necessary tools, providing clear and correct arguments. If a tool fails, try to understand why and adapt your plan (e.g., try a different search query or tool).
4.  **Synthesize and Verify Information:** Once you have gathered sufficient information, synthesize it into a coherent answer. Do not just list facts; explain their significance and how they relate to the original question. If there are contradictions or uncertainties, mention them.
5.  **Formulate the Final Answer:**
    * Present your answer clearly and concisely.
    * Always begin your ultimate response with "FINAL ANSWER:".
    * If the answer is a single number, provide only the number.
    * If the answer is a list, provide comma-separated values.
    * For complex answers, use structured formats like bullet points or JSON where appropriate to enhance readability.
    * **Crucially, always include sources or references (e.g., URLs, Wikipedia titles, file names) where you obtained the information.** This builds trust and allows for verification.
    * If you used `file_analysis` or `data_analysis` tools on an uploaded file, explicitly state that you analyzed the provided file.

**Important Considerations:**
* **Prioritize:** If the query involves a specific file, start by analyzing that file if appropriate.
* **Limitations:** If you cannot answer a question with the available tools, state that clearly.
* **Conciseness:** Be as concise as possible while providing a complete and accurate answer.
"""
        agent = CodeAgent(
            model=self.model,
            tools=self.tools,
            add_base_tools=True
        )
        agent.prompt_templates["system_prompt"] = system_prompt
        return agent

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        answer = self.agent.run(question)
        print(f"Agent returning answer: {answer}")
        return answer
        

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)