Spaces:
Sleeping
Sleeping
File size: 27,447 Bytes
f18e2ca cd40d80 20c067b 2b9b092 ababcac 2b9b092 df62ccf 2b9b092 20c067b 2b9b092 a625210 2b9b092 a625210 2b9b092 a625210 2b9b092 a625210 2b9b092 a625210 2b9b092 a625210 2b9b092 6c9430d f7bb0d5 6c9430d 2b9b092 6c9430d 2b9b092 5b359d0 2b9b092 dbc2e87 6c9430d 2b9b092 6c9430d 2b9b092 6c9430d 2b9b092 6c9430d 2b9b092 8a9ad42 2b9b092 6c9430d f7bb0d5 6c9430d a625210 6c9430d 0f88890 6c9430d dd180a2 07f3838 dd180a2 07f3838 dd180a2 07f3838 dd180a2 07f3838 dd180a2 07f3838 dd180a2 07f3838 f57a425 28a1f20 20c067b 2b9b092 dd180a2 2b9b092 20c067b dd180a2 f7bb0d5 dd180a2 a625210 dd180a2 a625210 dd180a2 2b9b092 dd180a2 2b9b092 dd180a2 f7bb0d5 2b9b092 dd180a2 2b9b092 20c067b dd180a2 20c067b dd180a2 2b9b092 dd180a2 a625210 dd180a2 2b9b092 dd180a2 d956180 dd180a2 2b9b092 dd180a2 d956180 2b9b092 d956180 2b9b092 d956180 750ac07 d2e0bae d956180 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, ToolCallingAgent, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#Load environment variables
load_dotenv()
import io
import contextlib
import traceback
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from smolagents import Tool, CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel
class CodeLlamaTool(Tool):
name = "code_llama_tool"
description = "Solves reasoning/code questions using Meta Code Llama 7B Instruct"
inputs = {
"question": {
"type": "string",
"description": "The question requiring code-based or reasoning-based solution"
}
}
output_type = "string"
def __init__(self):
self.model_id = "codellama/CodeLlama-7b-Instruct-hf"
token = os.getenv("HF_TOKEN")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
device_map="auto",
torch_dtype="auto",
token=token
)
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=512,
temperature=0.2,
truncation=True
)
def forward(self, question: str) -> str:
prompt = f"""You are an AI that uses Python code to answer questions.
Question: {question}
Instructions:
- If solving requires code, use a block like <tool>code</tool>.
- Always end with <final>FINAL ANSWER</final> containing the final number or string.
Example:
Question: What is 5 * sqrt(36)?
Answer:
<tool>
import math
print(5 * math.sqrt(36))
</tool>
<final>30.0</final>
Answer:"""
response = self.pipeline(prompt)[0]["generated_text"]
return self.parse_and_execute(response)
def parse_and_execute(self, response: str) -> str:
try:
# Extract and run code if exists
if "<tool>" in response and "</tool>" in response:
code = response.split("<tool>")[1].split("</tool>")[0].strip()
result = self._run_code(code)
return f"FINAL ANSWER (code output): {result}"
# Extract final result directly
elif "<final>" in response and "</final>" in response:
final = response.split("<final>")[1].split("</final>")[0].strip()
return f"FINAL ANSWER: {final}"
return f"Could not extract final answer.\n\n{response}"
except Exception as e:
return f"Error in parse_and_execute: {str(e)}\n\nFull response:\n{response}"
def _run_code(self, code: str) -> str:
buffer = io.StringIO()
try:
with contextlib.redirect_stdout(buffer):
exec(code, {})
return buffer.getvalue().strip()
except Exception:
return f"Error executing code:\n{traceback.format_exc()}"
#from smolagents import Tool
#from langchain_community.document_loaders import WikipediaLoader
class WikiSearchTool(Tool):
name = "wiki_search"
description = "Search Wikipedia for a query and return up to 2 results."
inputs = {
"query": {"type": "string", "description": "The search term for Wikipedia."}
}
output_type = "string"
def forward(self, query: str) -> str:
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return formatted_search_docs
class StringReverseTool(Tool):
name = "reverse_message"
description = "When you received a strange text, try to reverse it and perform action described in reversed message."
inputs = {
"message": {
"type": "string",
"description": "A message, which looks like strange and can be reversed to get actions to execute."
}
}
output_type = "string"
def __init__(self):
return
def forward(self, message: str):
return message[::-1]
class KeywordsExtractorTool(Tool):
"""Extracts top 5 keywords from a given text based on frequency."""
name = "keywords_extractor"
description = "This tool returns the 5 most frequent keywords occur in provided block of text."
inputs = {
"text": {
"type": "string",
"description": "Text to analyze for keywords.",
}
}
output_type = "string"
def forward(self, text: str) -> str:
try:
all_words = re.findall(r'\b\w+\b', text.lower())
conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'}
filtered_words = []
for w in all_words:
if w not in conjunctions:
filtered_words.push(w)
word_counts = Counter(filtered_words)
k = 5
return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1])
except Exception as e:
return f"Error during extracting most common words: {e}"
import requests
import pandas as pd
from io import BytesIO
from smolagents import Tool # Make sure to import the Tool base class
class ParseExcelToJsonTool(Tool):
"""
A tool for fetching and parsing an Excel file into structured JSON data.
"""
name = "parse_excel_to_json"
description = (
"For a given task_id, fetches an Excel file from a remote URL, "
"parses its sheets, and returns the data as a structured JSON object. "
"Each sheet's data is returned as a list of dictionaries, with each dictionary "
"representing a row (limited to the first 20 rows). "
"Useful for extracting structured information from Excel files."
)
inputs = {
"task_id": {
"type": "string",
"description": "The task ID used to construct the URL for fetching the Excel file.",
}
}
output_type = "json" # The tool returns a dictionary, so "json" is the appropriate output_type
def _run(self, task_id: str) -> dict:
"""
Fetches and parses an Excel file from a URL based on the task_id.
"""
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
try:
response = requests.get(url, timeout=100)
response.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
xls_content = pd.ExcelFile(BytesIO(response.content))
json_sheets = {}
for sheet_name in xls_content.sheet_names:
df = xls_content.parse(sheet_name)
df = df.dropna(how="all") # Drop rows that are entirely NaN
# Limit to the first 20 rows for efficiency and to prevent overwhelming context
rows = df.head(20).to_dict(orient="records")
json_sheets[sheet_name] = rows
return {
"task_id": task_id,
"sheets": json_sheets,
"status": "Success"
}
except requests.exceptions.RequestException as e:
return {
"task_id": task_id,
"sheets": {},
"status": f"Network or HTTP error: {str(e)}"
}
except Exception as e:
return {
"task_id": task_id,
"sheets": {},
"status": f"Error in parsing Excel file: {str(e)}"
}
# Optional: You can keep __call__ for direct instance calling, but it's handled by Tool base class
# def __call__(self, task_id: str) -> dict:
# return self._run(task_id)
import os
from langchain_community.document_loaders import PyMuPDFLoader
from docx import Document as DocxDocument
import openpyxl
class AnalyseAttachmentTool(Tool):
"""
A tool for analyzing various attachment types (PY, PDF, TXT, DOCX, XLSX)
and extracting their text content.
"""
name = "analyze_attachment"
description = (
"Analyzes attachments including PY, PDF, TXT, DOCX, and XLSX files and returns text content. "
"Useful for understanding the content of various document types. "
"The output is limited to the first 3000 characters for readability."
)
inputs = {
"file_path": {
"type": "string",
"description": "Local path to the attachment file (e.g., 'documents/report.pdf').",
}
}
output_type = "string"
def forward(self, file_path: str) -> str:
"""
Executes the attachment analysis. This method is called internally by the tool.
"""
if not os.path.exists(file_path):
return f"File not found: {file_path}"
try:
ext = os.path.splitext(file_path)[1].lower()
content = ""
if ext == ".pdf":
loader = PyMuPDFLoader(file_path)
documents = loader.load()
content = "\n\n".join([doc.page_content for doc in documents])
elif ext == ".txt" or ext == ".py":
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
elif ext == ".docx":
doc = DocxDocument(file_path)
content = "\n".join([para.text for para in doc.paragraphs])
elif ext == ".xlsx":
wb = openpyxl.load_workbook(file_path, data_only=True)
for sheet in wb:
content += f"Sheet: {sheet.title}\n"
for row in sheet.iter_rows(values_only=True):
content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n"
else:
return "Unsupported file format. Please use PY, PDF, TXT, DOCX, or XLSX."
return content[:3000]
except Exception as e:
return f"An error occurred while processing the file: {str(e)}"
def __call__(self, file_path: str) -> str:
"""
Makes the instance callable directly, invoking the _run method.
"""
return self._run(file_path)
import os
import base64
import requests
from PIL import Image
from io import BytesIO
# Define image analysis tool
import requests
class ImageAnalysisTool(Tool):
"""
A tool for analyzing images using a hosted Hugging Face model.
"""
name = "image_analysis"
description = (
"Analyzes an image provided via a URL and returns a textual description of its content. "
"This tool is useful for understanding the visual content of an image."
)
inputs = {
"image_url": {
"type": "string",
"description": "The URL of the image to be analyzed (e.g., 'https://example.com/image.jpg').",
}
}
output_type = "string"
# You might consider making API_URL a class attribute if it's constant
# or an instance attribute if it could vary per instance.
# For this example, we'll keep it within the _run method for directness.
def forward(self, image_url: str) -> str:
"""
Executes the image analysis by sending the image URL to the Hugging Face API.
"""
API_URL = "https://api-inference.huggingface.co/models/llava-hf/llava-1.5-7b-hf"
try:
response = requests.post(API_URL, json={"inputs": image_url})
response.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
# Assuming the response structure is always a list with a dictionary
# and 'generated_text' is the key for the description.
if response.json() and isinstance(response.json(), list) and 'generated_text' in response.json()[0]:
return response.json()[0]['generated_text']
else:
return f"Unexpected API response format: {response.text}"
except requests.exceptions.RequestException as e:
return f"An error occurred during the API request: {e}"
except IndexError:
return "API response did not contain expected 'generated_text'."
except Exception as e:
return f"An unexpected error occurred: {e}"
def __call__(self, image_url: str) -> str:
"""
Makes the instance callable directly, invoking the _run method for convenience.
"""
return self._run(image_url)
class VideoTranscriptionTool(Tool):
"""Fetch transcripts from YouTube videos"""
name = "transcript_video"
description = "Fetch text transcript from YouTube movies with optional timestamps"
inputs = {
"url": {"type": "string", "description": "YouTube video URL or ID"},
"include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True}
}
output_type = "string"
def forward(self, url: str, include_timestamps: bool = False) -> str:
if "youtube.com/watch" in url:
video_id = url.split("v=")[1].split("&")[0]
elif "youtu.be/" in url:
video_id = url.split("youtu.be/")[1].split("?")[0]
elif len(url.strip()) == 11: # Direct ID
video_id = url.strip()
else:
return f"YouTube URL or ID: {url} is invalid!"
try:
transcription = YouTubeTranscriptApi.get_transcript(video_id)
if include_timestamps:
formatted_transcription = []
for part in transcription:
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
formatted_transcription.append(f"[{timestamp}] {part['text']}")
return "\n".join(formatted_transcription)
else:
return " ".join([part['text'] for part in transcription])
except Exception as e:
return f"Error in extracting YouTube transcript: {str(e)}"
class BasicAgent:
def __init__(self):
token = os.environ.get("HF_API_TOKEN")
self.model = HfApiModel( # Store model as self.model if you need to access it later
temperature=0.1,
token=token
)
# Initialize all tool instances
self.search_tool = DuckDuckGoSearchTool()
self.wiki_search_tool = WikiSearchTool() # Ensure this class is defined/imported
self.str_reverse_tool = StringReverseTool() # Ensure this class is defined/imported
self.keywords_extract_tool = KeywordsExtractorTool() # Ensure this class is defined/imported
self.speech_to_text_tool = SpeechToTextTool() # Ensure this class is defined/imported
self.visit_webpage_tool = VisitWebpageTool() # Ensure this class is defined/imported
self.final_answer_tool = FinalAnswerTool()
# Custom tools - ensure these classes are defined and imported
self.video_transcription_tool = VideoTranscriptionTool()
self.image_analysis_tool = ImageAnalysisTool() # Renamed for clarity
self.analyse_attachment_tool = AnalyseAttachmentTool() # Renamed for clarity
self.code_llama_tool = CodeLlamaTool() # Ensure this class is defined/imported
self.parse_excel_to_json_tool = ParseExcelToJsonTool()
system_prompt_template = """
You are my general AI assistant. Your task is to answer the question I asked.
First, provide an explanation of your reasoning, step by step, to arrive at the answer.
Then, return your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]".
[YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question.
If the answer is a number, do not use commas or units (e.g., $, %) unless specified.
If the answer is a string, do not use articles or abbreviations (e.g., for cities), and write digits in plain text unless specified.
If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string.
"""
# Create web agent with image analysis capability
self.web_agent = ToolCallingAgent(
tools=[
self.search_tool, # Use the initialized DuckDuckGoSearchTool instance
self.visit_webpage_tool,
self.image_analysis_tool
],
model=self.model, # Use self.model
max_steps=10,
name="web_search_agent",
description="Runs web searches and analyzes images",
)
# Create main agent with all capabilities
self.agent = CodeAgent(
model=self.model, # Use self.model
tools=[
self.search_tool,
self.wiki_search_tool,
self.str_reverse_tool,
self.keywords_extract_tool,
self.speech_to_text_tool,
self.visit_webpage_tool,
self.final_answer_tool,
self.video_transcription_tool,
self.code_llama_tool,
self.parse_excel_to_json_tool,
self.image_analysis_tool, # Use the initialized instance
self.analyse_attachment_tool # Add the initialized attachment analysis tool
],
add_base_tools=True # Consider what this adds, ensure it doesn't duplicate.
)
# Update system prompt
# It's generally better to pass the system prompt directly if possible
# or manage it through prompt templates defined by smolagents.
# If smolagents adds its own system prompt, this appends to it.
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt_template
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# First try web agent for image-based queries
if any(keyword in question.lower() for keyword in ["image", "picture", "photo", "screenshot", "diagram"]):
print("Using web agent for image-related query")
answer = self.web_agent.run(question)
else:
print("Using main agent")
answer = self.agent.run(question)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |