wt002 commited on
Commit
0a1184e
·
verified ·
1 Parent(s): e92879a

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +2 -39
agent.py CHANGED
@@ -397,43 +397,6 @@ def create_documents(data_source: str, data: List[dict]) -> List[Document]:
397
 
398
  import faiss
399
 
400
- import os
401
- import numpy as np
402
- import faiss
403
-
404
- # Step 1: Define the path where the index will be saved
405
- index_dir = "/home/wendy/Downloads/faiss_index"
406
- os.makedirs(index_dir, exist_ok=True) # Create the directory if it doesn't exist
407
- index_file_path = os.path.join(index_dir, "index.faiss")
408
-
409
- # Step 2: Generate random data (e.g., 1000 vectors of dimension 128)
410
- d = 128 # Vector dimensionality
411
- n = 1000 # Number of vectors
412
- np.random.seed(42) # For reproducibility
413
-
414
- # Generate random vectors (uniform distribution)
415
- xb = np.random.random((n, d)).astype('float32')
416
-
417
- # Step 3: Create the FAISS index
418
- # Using the L2 distance metric (Euclidean distance)
419
- index = faiss.IndexFlatL2(d)
420
-
421
- # Step 4: Add the vectors to the index
422
- index.add(xb)
423
-
424
- # Step 5: Save the index to the specified path
425
- faiss.write_index(index, index_file_path)
426
-
427
- print(f"FAISS index saved to: {index_file_path}")
428
-
429
- # Step 6: Load the FAISS index from the file
430
- loaded_index = faiss.read_index(index_file_path)
431
-
432
- print("FAISS index loaded successfully from:", index_file_path)
433
-
434
-
435
-
436
-
437
  # Custom FAISS wrapper (optional, if you still want it)
438
  class MyVector_Store:
439
  def __init__(self, index: faiss.Index):
@@ -468,7 +431,7 @@ embedding_model = HuggingFaceEmbeddings(
468
  # -----------------------------
469
  try:
470
  vector_store = FAISS.load_local(
471
- "/home/wendy/Downloads/faiss_index/faiss_index",
472
  embedding_model,
473
  allow_dangerous_deserialization=True
474
  )
@@ -481,7 +444,7 @@ except Exception as e:
481
  # -----------------------------
482
  # Load FAISS index properly
483
  # -----------------------------
484
- loaded_store = FAISS.load_local("/home/wendy/Downloads/faiss_index", embedding_model, allow_dangerous_deserialization=True)
485
 
486
 
487
  # -----------------------------
 
397
 
398
  import faiss
399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400
  # Custom FAISS wrapper (optional, if you still want it)
401
  class MyVector_Store:
402
  def __init__(self, index: faiss.Index):
 
431
  # -----------------------------
432
  try:
433
  vector_store = FAISS.load_local(
434
+ "/home/wendy/my_hf_agent_course_projects/faiss_index/index.faiss",
435
  embedding_model,
436
  allow_dangerous_deserialization=True
437
  )
 
444
  # -----------------------------
445
  # Load FAISS index properly
446
  # -----------------------------
447
+ loaded_store = FAISS.load_local("/home/wendy/my_hf_agent_course_projects/faiss_index", embedding_model, allow_dangerous_deserialization=True)
448
 
449
 
450
  # -----------------------------