Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -138,16 +138,14 @@ sentence_transformer.max_seq_length = 512 # Set max sequence length
|
|
138 |
# Initialize embeddings with the model name (dim=768)
|
139 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
try:
|
143 |
-
results = retriever.get_relevant_documents("What is vector search?")
|
144 |
-
if not results:
|
145 |
-
raise ValueError("No documents found in the search results.")
|
146 |
-
# Access the first result safely if it exists
|
147 |
-
first_result = results[0]
|
148 |
-
print("First result:", first_result)
|
149 |
-
except Exception as e:
|
150 |
-
print(f"Error: {e}")
|
151 |
|
152 |
|
153 |
|
|
|
138 |
# Initialize embeddings with the model name (dim=768)
|
139 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
140 |
|
141 |
+
#from sentence_transformers import SentenceTransformer
|
142 |
+
|
143 |
+
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
144 |
+
query = "What is vector search?"
|
145 |
+
query_embedding = model.encode(query)
|
146 |
+
|
147 |
+
print("Embedding Length:", len(query_embedding)) # Ensure it's 768
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
|
151 |
|