wt002 commited on
Commit
7f0bbf2
·
verified ·
1 Parent(s): f740521

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +16 -7
agent.py CHANGED
@@ -369,27 +369,36 @@ class MyVectorStore:
369
  import json
370
  from langchain.schema import Document
371
 
372
- def reverse_text(text: str) -> str:
373
- """Fix backward questions like '.rewsna...'"""
374
- return text[::-1].replace("\\", "") if text.startswith(('.', ',')) else text
 
 
 
 
 
 
 
 
 
375
 
376
  with open("questions.json", "r", encoding="utf-8") as f:
377
  data = json.load(f)
378
 
379
  docs = [
380
  Document(
381
- page_content=reverse_text(str(item["question"])), # Ensure string + fix reversed text
382
  metadata={
383
  "task_id": item["task_id"],
384
- "level": item.get("Level", "Unknown"),
385
  "file_name": item.get("file_name", "")
386
  }
387
  )
388
  for item in data
389
- if "question" in item and item["question"] # Skip missing/empty questions
390
  ]
391
 
392
- texts = [doc.page_content for doc in docs] # Now this will work
393
 
394
  # Initialize the embedding model
395
  embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
 
369
  import json
370
  from langchain.schema import Document
371
 
372
+ def get_question(raw_question) -> str:
373
+ """Convert list to string and fix reversed text"""
374
+ # Handle lists (join with spaces)
375
+ if isinstance(raw_question, list):
376
+ text = " ".join(raw_question)
377
+ else:
378
+ text = str(raw_question)
379
+
380
+ # Fix reversed text like ".rewsna..."
381
+ if text.startswith(('.', ',')):
382
+ return text[::-1].replace("\\", "").strip()
383
+ return text
384
 
385
  with open("questions.json", "r", encoding="utf-8") as f:
386
  data = json.load(f)
387
 
388
  docs = [
389
  Document(
390
+ page_content=get_question(item["question"]),
391
  metadata={
392
  "task_id": item["task_id"],
393
+ "level": item.get("Level", "unknown"),
394
  "file_name": item.get("file_name", "")
395
  }
396
  )
397
  for item in data
398
+ if "question" in item and item["question"] # Skip missing/empty
399
  ]
400
 
401
+ texts = [doc.page_content for doc in docs]
402
 
403
  # Initialize the embedding model
404
  embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")