Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,321 @@
|
|
| 1 |
import os
|
| 2 |
-
from
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import requests
|
| 5 |
-
|
| 6 |
-
from typing import List, Dict, Union, Optional
|
| 7 |
import pandas as pd
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
import
|
| 12 |
-
import
|
| 13 |
-
from
|
| 14 |
-
from
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
load_dotenv()
|
| 18 |
|
| 19 |
# (Keep Constants as is)
|
| 20 |
# --- Constants ---
|
| 21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 22 |
-
|
| 23 |
|
| 24 |
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
def __init__(self, model_name: str = "gemini-pro"):
|
| 28 |
-
"""
|
| 29 |
-
Multi-modal agent powered by Google Gemini with:
|
| 30 |
-
- Web search
|
| 31 |
-
- Wikipedia access
|
| 32 |
-
- Document processing
|
| 33 |
-
"""
|
| 34 |
-
self.model = genai.GenerativeModel(model_name)
|
| 35 |
-
self.wiki = wikipediaapi.Wikipedia('en')
|
| 36 |
-
self.searx_url = "https://searx.space/search" # Public Searx instance
|
| 37 |
-
|
| 38 |
-
print("BasicAgent initialized.")
|
| 39 |
-
|
| 40 |
-
def __call__(self, question: str) -> str:
|
| 41 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 42 |
-
fixed_answer = self.process_request(question)
|
| 43 |
-
print(f"Agent returning answer: {fixed_answer}")
|
| 44 |
-
return fixed_answer
|
| 45 |
-
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
"""Process PDF using Gemini's vision capability"""
|
| 98 |
-
try:
|
| 99 |
-
# For Gemini 1.5 or later which supports file uploads
|
| 100 |
-
with open(file_path, "rb") as f:
|
| 101 |
-
file = genai.upload_file(f)
|
| 102 |
-
response = self.model.generate_content(
|
| 103 |
-
["Extract and summarize the key points from this document:", file]
|
| 104 |
-
)
|
| 105 |
-
return response.text
|
| 106 |
-
except:
|
| 107 |
-
# Fallback for older Gemini versions
|
| 108 |
-
try:
|
| 109 |
-
import PyPDF2
|
| 110 |
-
with open(file_path, 'rb') as f:
|
| 111 |
-
reader = PyPDF2.PdfReader(f)
|
| 112 |
-
return "\n".join([page.extract_text() for page in reader.pages])
|
| 113 |
-
except ImportError:
|
| 114 |
-
return "PDF processing requires PyPDF2 (pip install PyPDF2)"
|
| 115 |
-
|
| 116 |
-
def _process_word(self, file_path: str) -> str:
|
| 117 |
-
"""Process Word documents"""
|
| 118 |
-
try:
|
| 119 |
-
from docx import Document
|
| 120 |
-
doc = Document(file_path)
|
| 121 |
-
return "\n".join([para.text for para in doc.paragraphs])
|
| 122 |
-
except ImportError:
|
| 123 |
-
return "Word processing requires python-docx (pip install python-docx)"
|
| 124 |
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
"""
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
"""
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
from typing import Annotated, Optional, TypedDict
|
| 3 |
import gradio as gr
|
| 4 |
+
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage
|
| 5 |
+
from langchain_openai import ChatOpenAI
|
| 6 |
+
from langgraph.graph.message import add_messages
|
| 7 |
+
from langgraph.graph import StateGraph, START
|
| 8 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
| 9 |
import requests
|
|
|
|
|
|
|
| 10 |
import pandas as pd
|
| 11 |
+
from langchain.tools import Tool
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
|
| 14 |
+
from arxiv_searcher import ArxivSearcher
|
| 15 |
+
from chess_algebraic_notation_retriever import ChessAlgebraicNotationMoveRetriever
|
| 16 |
+
from excel_file_reader import ExcelFileReader
|
| 17 |
+
from image_question_answer_tool import ImageQuestionAnswerTool
|
| 18 |
+
from python_code_question_answer_tool import PythonCodeQuestionAnswerTool
|
| 19 |
+
from tavily_searcher import TavilySearcher
|
| 20 |
+
from transcriber import Transcriber
|
| 21 |
+
from wikipedia_searcher import WikipediaSearcher
|
| 22 |
+
from youtube_video_question_answer_tool import YoutubeVideoQuestionAnswerTool
|
| 23 |
|
| 24 |
load_dotenv()
|
| 25 |
|
| 26 |
# (Keep Constants as is)
|
| 27 |
# --- Constants ---
|
| 28 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 29 |
+
ASSOCIATED_FILE_ENDPOINT = f"{DEFAULT_API_URL}/files/"
|
| 30 |
|
| 31 |
# --- Basic Agent Definition ---
|
| 32 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 33 |
+
#search_tool = DuckDuckGoSearchRun()
|
| 34 |
|
| 35 |
+
#search_tool = DuckDuckGoSearcherTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
def retrieve_task_file(task_id: str) -> Optional[bytes]:
|
| 38 |
+
"""
|
| 39 |
+
Retrieve the task file for a given task ID.
|
| 40 |
+
"""
|
| 41 |
+
try:
|
| 42 |
+
response = requests.get(ASSOCIATED_FILE_ENDPOINT + task_id, timeout=15)
|
| 43 |
+
response.raise_for_status()
|
| 44 |
+
if response.status_code != 200:
|
| 45 |
+
print(f"Error fetching file: {response.status_code}")
|
| 46 |
+
return None
|
| 47 |
+
#print(f"Fetched file: {response.content}")
|
| 48 |
+
return response.content
|
| 49 |
+
except requests.exceptions.RequestException as e:
|
| 50 |
+
print(f"Error fetching file: {e}")
|
| 51 |
+
return None
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"An unexpected error occurred fetching file: {e}")
|
| 54 |
+
return None
|
| 55 |
|
| 56 |
+
def retrieve_next_chess_move_in_algebraic_notation(task_file_path: str, is_black_turn: bool) -> str:
|
| 57 |
+
"""
|
| 58 |
+
Retrieve the next chess move in algebraic notation from an image path.
|
| 59 |
+
"""
|
| 60 |
+
if task_file_path is None:
|
| 61 |
+
return "Error: Task file not found."
|
| 62 |
+
# Retrieve the next chess move in algebraic notation
|
| 63 |
+
next_chess_move = ChessAlgebraicNotationMoveRetriever().retrieve(task_file_path, is_black_turn)
|
| 64 |
+
return next_chess_move
|
| 65 |
+
|
| 66 |
+
# Initialize the tool
|
| 67 |
+
retrieve_next_chess_move_in_algebraic_notation_tool = Tool(
|
| 68 |
+
name="retrieve_next_chess_move_in_algebraic_notation",
|
| 69 |
+
func=retrieve_next_chess_move_in_algebraic_notation,
|
| 70 |
+
description="Retrieve the next chess move in algebraic notation from an image path."
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
def transcribe_audio(file_path: str) -> str:
|
| 74 |
+
if file_path is None:
|
| 75 |
+
return "Error: Audio path not found."
|
| 76 |
+
# Transcribe the audio
|
| 77 |
+
return Transcriber().transcribe(file_path)
|
| 78 |
+
|
| 79 |
+
# Initialize the tool
|
| 80 |
+
transcribe_audio_tool = Tool(
|
| 81 |
+
name="transcribe_audio",
|
| 82 |
+
func=transcribe_audio,
|
| 83 |
+
description="Transcribe the audio from an audio path."
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Initialize the tool
|
| 87 |
+
answer_python_code_tool = PythonCodeQuestionAnswerTool()
|
| 88 |
+
|
| 89 |
+
# Initialize the tool
|
| 90 |
+
answer_image_question_tool = ImageQuestionAnswerTool()
|
| 91 |
+
|
| 92 |
+
# Initialize the tool
|
| 93 |
+
answer_youtube_video_question_tool = YoutubeVideoQuestionAnswerTool()
|
| 94 |
+
|
| 95 |
+
'''def answer_youtube_video_question(youtube_video_url: str, question: str) -> str:
|
| 96 |
+
"""
|
| 97 |
+
Answer the question based on the youtube video.
|
| 98 |
+
"""
|
| 99 |
+
if youtube_video_url is None:
|
| 100 |
+
return "Error: Video not found."
|
| 101 |
+
# Download the video
|
| 102 |
+
video_path = YoutubeVideoDownloader().download_video(youtube_video_url)
|
| 103 |
+
# Answer the question
|
| 104 |
+
return VideoQuestionAnswer().answer(video_path, question)
|
| 105 |
+
# Initialize the tool
|
| 106 |
+
answer_youtube_video_question_tool = Tool(
|
| 107 |
+
name="answer_youtube_video_question",
|
| 108 |
+
func=answer_youtube_video_question,
|
| 109 |
+
description="Answer the question based on the youtube video."
|
| 110 |
+
)'''
|
| 111 |
+
|
| 112 |
+
def read_excel_file(file_path: str) -> str:
|
| 113 |
+
if file_path is None:
|
| 114 |
+
return "Error: File not found."
|
| 115 |
+
return ExcelFileReader().read_file(file_path)
|
| 116 |
+
|
| 117 |
+
# Initialize the tool
|
| 118 |
+
read_excel_file_tool = Tool(
|
| 119 |
+
name="read_excel_file",
|
| 120 |
+
func=read_excel_file,
|
| 121 |
+
description="Read the excel file."
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Initialize the tool
|
| 125 |
+
wikipedia_search_tool = Tool(
|
| 126 |
+
name="wikipedia_search",
|
| 127 |
+
func=WikipediaSearcher().search,
|
| 128 |
+
description="Search Wikipedia for a given query."
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Initialize the tool
|
| 132 |
+
arxiv_search_tool = Tool(
|
| 133 |
+
name="arxiv_search",
|
| 134 |
+
func=ArxivSearcher().search,
|
| 135 |
+
description="Search Arxiv for a given query."
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
tavily_search_tool = Tool(
|
| 139 |
+
name="tavily_search",
|
| 140 |
+
func=TavilySearcher().search,
|
| 141 |
+
description="Search the web for a given query."
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
def format_gaia_answer(answer: str) -> str:
|
| 145 |
+
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 146 |
+
prompt = f"""
|
| 147 |
+
You are formatting answers for the GAIA benchmark, which requires responses to be concise and unambiguous.
|
| 148 |
+
Given the answer: {answer}
|
| 149 |
+
Return the answer in the correct GAIA format:
|
| 150 |
+
- If the answer is a single word or number, return it without any additional text or formatting.
|
| 151 |
+
- If the answer is a list, return a comma-separated list without any additional text or formatting.
|
| 152 |
+
- If the answer is a string, return it without any additional text or formatting.
|
| 153 |
+
Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
|
| 154 |
+
Do not include any additional text or formatting.
|
| 155 |
+
"""
|
| 156 |
+
response = llm.invoke(prompt)
|
| 157 |
+
# Delete double quotes
|
| 158 |
+
return response.content.strip().replace('"', '')
|
| 159 |
+
|
| 160 |
+
class AgentState(TypedDict):
|
| 161 |
+
# The document provided
|
| 162 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
| 163 |
+
file_path: Optional[str]
|
| 164 |
+
|
| 165 |
+
class BasicAgent:
|
| 166 |
+
def __init__(self):
|
| 167 |
+
tools = [
|
| 168 |
+
tavily_search_tool,
|
| 169 |
+
arxiv_search_tool,
|
| 170 |
+
wikipedia_search_tool,
|
| 171 |
+
transcribe_audio_tool,
|
| 172 |
+
answer_python_code_tool,
|
| 173 |
+
answer_image_question_tool,
|
| 174 |
+
answer_youtube_video_question_tool,
|
| 175 |
+
read_excel_file_tool
|
| 176 |
+
]
|
| 177 |
+
'''llm = ChatGoogleGenerativeAI(
|
| 178 |
+
model="gemini-2.0-flash",
|
| 179 |
+
temperature=0.2,
|
| 180 |
+
api_key=os.getenv("GEMINI_API_KEY")
|
| 181 |
+
)'''
|
| 182 |
+
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 183 |
+
self.llm_with_tools = llm.bind_tools(tools)
|
| 184 |
+
builder = StateGraph(AgentState)
|
| 185 |
+
|
| 186 |
+
# Define nodes: these do the work
|
| 187 |
+
builder.add_node("assistant", self.assistant)
|
| 188 |
+
builder.add_node("tools", ToolNode(tools))
|
| 189 |
+
|
| 190 |
+
# Define edges: these determine how the control flow moves
|
| 191 |
+
builder.add_edge(START, "assistant")
|
| 192 |
+
builder.add_conditional_edges(
|
| 193 |
+
"assistant",
|
| 194 |
+
# If the latest message requires a tool, route to tools
|
| 195 |
+
# Otherwise, provide a direct response
|
| 196 |
+
tools_condition,
|
| 197 |
+
)
|
| 198 |
+
builder.add_edge("tools", "assistant")
|
| 199 |
+
self.agent = builder.compile()
|
| 200 |
|
| 201 |
+
print("BasicAgent initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
def assistant(self, state: AgentState):
|
| 204 |
+
# System message
|
| 205 |
+
textual_description_of_tools="""
|
| 206 |
+
tavily_search(query: str) -> str:
|
| 207 |
+
Search the web for a given query.
|
| 208 |
+
Args:
|
| 209 |
+
query: Query to search the web for (string).
|
| 210 |
+
Returns:
|
| 211 |
+
A single string containing the information found on the web.
|
| 212 |
+
arxiv_search(query: str) -> str:
|
| 213 |
+
Search Arxiv, that contains scientific papers, for a given query.
|
| 214 |
+
Args:
|
| 215 |
+
query: Query to search Arxiv for (string).
|
| 216 |
+
Returns:
|
| 217 |
+
A single string containing the answer to the question.
|
| 218 |
+
wikipedia_search(query: str) -> str:
|
| 219 |
+
Search Wikipedia for a given query.
|
| 220 |
+
Args:
|
| 221 |
+
query: Query to search Wikipedia for (string).
|
| 222 |
+
Returns:
|
| 223 |
+
A single string containing the answer to the question.
|
| 224 |
+
transcribe_audio(file_path: str) -> str:
|
| 225 |
+
Transcribe the audio from an audio path.
|
| 226 |
+
Args:
|
| 227 |
+
file_path: File path of the audio file (string).
|
| 228 |
+
Returns:
|
| 229 |
+
A single string containing the transcribed text from the audio.
|
| 230 |
+
|
| 231 |
+
answer_python_code(file_path: str, question: str) -> str:
|
| 232 |
+
Answer the question based on the python code.
|
| 233 |
+
Args:
|
| 234 |
+
file_path: File path of the python file (string).
|
| 235 |
+
question: Question to answer (string).
|
| 236 |
+
Returns:
|
| 237 |
+
A single string containing the answer to the question.
|
| 238 |
+
|
| 239 |
+
answer_image_question(file_path: str, question: str) -> str:
|
| 240 |
+
Answer the question based on the image.
|
| 241 |
+
Args:
|
| 242 |
+
file_path: File path of the image (string).
|
| 243 |
+
question: Question to answer (string).
|
| 244 |
+
Returns:
|
| 245 |
+
A single string containing the answer to the question.
|
| 246 |
+
|
| 247 |
+
download_youtube_video(youtube_video_url: str) -> str:
|
| 248 |
+
Download the Youtube video into a local file based on the URL
|
| 249 |
+
Args:
|
| 250 |
+
youtube_video_url: A youtube video url (string).
|
| 251 |
+
Returns:
|
| 252 |
+
A single string containing the file path of the downloaded youtube video.
|
| 253 |
+
answer_youtube_video_question(file_path: str, question: str) -> str:
|
| 254 |
+
Answer the question based on file path of the downloaded youtube video
|
| 255 |
+
Args:
|
| 256 |
+
file_path: File path of the downloaded youtube video (string).
|
| 257 |
+
question: Question to answer (string).
|
| 258 |
+
Returns:
|
| 259 |
+
A single string containing the answer to the question.
|
| 260 |
+
|
| 261 |
+
read_excel_file(file_path: str) -> str:
|
| 262 |
+
Read the excel file.
|
| 263 |
+
Args:
|
| 264 |
+
file_path: File path of the excel file (string).
|
| 265 |
+
Returns:
|
| 266 |
+
A markdown formatted string containing the contents of the excel file.
|
| 267 |
"""
|
| 268 |
+
file_path=state["file_path"]
|
| 269 |
+
prompt = f"""
|
| 270 |
+
You are a helpful assistant that can analyse images, videos, excel files and Python scripts and run computations with provided tools:
|
| 271 |
+
{textual_description_of_tools}
|
| 272 |
+
You have access to the file path of the attached file in case it's informed. Currently the file path is: {file_path}
|
| 273 |
+
Be direct and specific. GAIA benchmark requires exact matching answers.
|
| 274 |
+
For example, if asked "What is the capital of France?", respond simply with "Paris".
|
| 275 |
+
Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
|
| 276 |
+
Do not include any additional text or formatting.
|
| 277 |
+
If you are required a number, return a number, not the items.
|
| 278 |
"""
|
| 279 |
+
sys_msg = SystemMessage(content=prompt)
|
| 280 |
+
|
| 281 |
+
return {
|
| 282 |
+
"messages": [self.llm_with_tools.invoke([sys_msg] + state["messages"], config={"configurable": {"file_path": state["file_path"]}})],
|
| 283 |
+
"file_path": state["file_path"]
|
| 284 |
+
}
|
| 285 |
+
'''return {
|
| 286 |
+
"messages": [self.llm_with_tools.invoke(
|
| 287 |
+
state["messages"],
|
| 288 |
+
config={"configurable": {"file_path": state["file_path"]}} # Aquí pasas el task_id
|
| 289 |
+
)],
|
| 290 |
+
"file_path": state["file_path"]
|
| 291 |
+
}'''
|
| 292 |
+
|
| 293 |
+
def __call__(self, question: str, task_id: str, file_name: str) -> str:
|
| 294 |
+
print(f"######################### Agent received question (first 50 chars): {question[:50]}... with file_name: {file_name}")
|
| 295 |
+
|
| 296 |
+
# Get the file path
|
| 297 |
+
tmp_file_path = None
|
| 298 |
+
if file_name is not None and file_name != "":
|
| 299 |
+
file_content = retrieve_task_file(task_id)
|
| 300 |
+
if file_content is not None:
|
| 301 |
+
print(f"Saving file {file_name} to tmp folder")
|
| 302 |
+
tmp_file_path = f"tmp/{file_name}"
|
| 303 |
+
with open(tmp_file_path, "wb") as f:
|
| 304 |
+
f.write(file_content)
|
| 305 |
+
# Show the file path
|
| 306 |
+
print(f"File path: {tmp_file_path}")
|
| 307 |
+
|
| 308 |
+
messages = self.agent.invoke({"messages": [HumanMessage(question)], "file_path": tmp_file_path})
|
| 309 |
+
# Show the messages
|
| 310 |
+
for m in messages['messages']:
|
| 311 |
+
m.pretty_print()
|
| 312 |
+
answer = messages["messages"][-1].content
|
| 313 |
+
answer = format_gaia_answer(answer)
|
| 314 |
+
print(f"######################### Agent returning answer: {answer}\n")
|
| 315 |
+
# Delete the file
|
| 316 |
+
if tmp_file_path is not None:
|
| 317 |
+
os.remove(tmp_file_path)
|
| 318 |
+
return answer
|
| 319 |
|
| 320 |
|
| 321 |
|