rolo-models / app.py
wuhp's picture
Update app.py
9c4ffa5 verified
raw
history blame
8.85 kB
import gradio as gr
import json
import os
from pathlib import Path
from PIL import Image
import shutil
from ultralytics import YOLO
import requests
MODELS_DIR = "models"
MODELS_INFO_FILE = "models_info.json"
TEMP_DIR = "temp"
OUTPUT_DIR = "outputs"
def download_file(url, dest_path):
"""
Download a file from a URL to the destination path.
Args:
url (str): The URL to download from.
dest_path (str): The local path to save the file.
Returns:
bool: True if download succeeded, False otherwise.
"""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(dest_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {url} to {dest_path}.")
return True
except Exception as e:
print(f"Failed to download {url}. Error: {e}")
return False
def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
"""
Load YOLO models and their information from the specified directory and JSON file.
Downloads models if they are not already present.
Args:
models_dir (str): Path to the models directory.
info_file (str): Path to the JSON file containing model info.
Returns:
dict: A dictionary of models and their associated information.
"""
with open(info_file, 'r') as f:
models_info = json.load(f)
models = {}
for model_info in models_info:
model_name = model_info['model_name']
display_name = model_info.get('display_name', model_name)
model_dir = os.path.join(models_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, f"{model_name}.pt")
download_url = model_info['download_url']
if not os.path.isfile(model_path):
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
success = download_file(download_url, model_path)
if not success:
print(f"Skipping model '{display_name}' due to download failure.")
continue
try:
model = YOLO(model_path)
models[model_name] = {
'display_name': display_name,
'model': model,
'info': model_info
}
print(f"Loaded model '{display_name}' from '{model_path}'.")
except Exception as e:
print(f"Error loading model '{display_name}': {e}")
return models
def get_model_info(model_info):
"""
Retrieve formatted model information for display.
Args:
model_info (dict): The model's information dictionary.
Returns:
str: A formatted string containing model details.
"""
info = model_info
class_ids = info.get('class_ids', {})
class_image_counts = info.get('class_image_counts', {})
datasets_used = info.get('datasets_used', [])
class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
info_text = (
f"**{info.get('display_name', 'Model Name')}**\n\n"
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
f"**Training Epochs:** {info.get('training_epochs', 'N/A')}\n\n"
f"**Batch Size:** {info.get('batch_size', 'N/A')}\n\n"
f"**Optimizer:** {info.get('optimizer', 'N/A')}\n\n"
f"**Learning Rate:** {info.get('learning_rate', 'N/A')}\n\n"
f"**Data Augmentation Level:** {info.get('data_augmentation_level', 'N/A')}\n\n"
f"**[email protected]:** {info.get('mAP_score', 'N/A')}\n\n"
f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
f"**Class IDs:**\n{class_ids_formatted}\n\n"
f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
f"**Class Image Counts:**\n{class_image_counts_formatted}"
)
return info_text
def predict_image(model_name, image, confidence, models):
"""
Perform prediction on an uploaded image using the selected YOLO model.
Args:
model_name (str): The name of the selected model.
image (PIL.Image.Image): The uploaded image.
confidence (float): The confidence threshold for detections.
models (dict): The dictionary containing models and their info.
Returns:
tuple: A status message, the processed image, and the path to the output image.
"""
model_entry = models.get(model_name, {})
model = model_entry.get('model', None)
if not model:
return "Error: Model not found.", None, None
try:
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
image.save(input_image_path)
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
if not os.path.isfile(output_image_path):
output_image_path = results[0].save()[0]
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
shutil.copy(output_image_path, final_output_path)
output_image = Image.open(final_output_path)
return "βœ… Prediction completed successfully.", output_image, final_output_path
except Exception as e:
return f"❌ Error during prediction: {str(e)}", None, None
def main():
models = load_models()
if not models:
print("No models loaded. Please check your models_info.json and model URLs.")
return
with gr.Blocks() as demo:
gr.Markdown("# πŸ§ͺ YOLOv11 Model Tester")
gr.Markdown(
"""
Upload images to test different YOLOv11 models. Select a model from the dropdown to see its details.
"""
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=[models[m]['display_name'] for m in models],
label="Select Model",
value=None
)
model_info = gr.Markdown("**Model Information will appear here.**")
display_to_name = {models[m]['display_name']: m for m in models}
def update_model_info(selected_display_name):
if not selected_display_name:
return "Please select a model."
model_name = display_to_name.get(selected_display_name)
if not model_name:
return "Model information not available."
model_entry = models[model_name]['info']
return get_model_info(model_entry)
model_dropdown.change(
fn=update_model_info,
inputs=model_dropdown,
outputs=model_info
)
with gr.Row():
confidence_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.25,
label="Confidence Threshold",
info="Adjust the minimum confidence required for detections to be displayed."
)
with gr.Tab("πŸ–ΌοΈ Image"):
with gr.Column():
image_input = gr.Image(
type='pil',
label="Upload Image for Prediction"
)
image_predict_btn = gr.Button("πŸ” Predict on Image")
image_status = gr.Markdown("**Status will appear here.**")
image_output = gr.Image(label="Predicted Image")
image_download_btn = gr.File(label="⬇️ Download Predicted Image")
def process_image(selected_display_name, image, confidence):
if not selected_display_name:
return "❌ Please select a model.", None, None
model_name = display_to_name.get(selected_display_name)
return predict_image(model_name, image, confidence, models)
image_predict_btn.click(
fn=process_image,
inputs=[model_dropdown, image_input, confidence_slider],
outputs=[image_status, image_output, image_download_btn]
)
gr.Markdown(
"""
---
**Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
"""
)
demo.launch()
if __name__ == "__main__":
main()