Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -157,46 +157,6 @@ def predict_image(model_name, image, confidence, models):
|
|
| 157 |
except Exception as e:
|
| 158 |
return f"β Error during prediction: {str(e)}", None, None
|
| 159 |
|
| 160 |
-
def predict_video(model_name, video, confidence, models):
|
| 161 |
-
"""
|
| 162 |
-
Perform prediction on an uploaded video using the selected YOLO model.
|
| 163 |
-
|
| 164 |
-
Args:
|
| 165 |
-
model_name (str): The name of the selected model.
|
| 166 |
-
video (str): Path to the uploaded video file.
|
| 167 |
-
confidence (float): The confidence threshold for detections.
|
| 168 |
-
models (dict): The dictionary containing models and their info.
|
| 169 |
-
|
| 170 |
-
Returns:
|
| 171 |
-
tuple: A status message, the processed video, and the path to the output video.
|
| 172 |
-
"""
|
| 173 |
-
model_entry = models.get(model_name, {})
|
| 174 |
-
model = model_entry.get('model', None)
|
| 175 |
-
if not model:
|
| 176 |
-
return "Error: Model not found.", None, None
|
| 177 |
-
try:
|
| 178 |
-
|
| 179 |
-
os.makedirs(TEMP_DIR, exist_ok=True)
|
| 180 |
-
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 181 |
-
|
| 182 |
-
input_video_path = os.path.join(TEMP_DIR, f"{model_name}_input_video.mp4")
|
| 183 |
-
shutil.copy(video, input_video_path)
|
| 184 |
-
|
| 185 |
-
results = model(input_video_path, save=True, save_txt=False, conf=confidence)
|
| 186 |
-
|
| 187 |
-
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
| 188 |
-
output_video_path = os.path.join(latest_run, Path(input_video_path).name)
|
| 189 |
-
if not os.path.isfile(output_video_path):
|
| 190 |
-
|
| 191 |
-
output_video_path = results[0].save()[0]
|
| 192 |
-
|
| 193 |
-
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_video.mp4")
|
| 194 |
-
shutil.copy(output_video_path, final_output_path)
|
| 195 |
-
|
| 196 |
-
return "β
Prediction completed successfully.", final_output_path, final_output_path
|
| 197 |
-
except Exception as e:
|
| 198 |
-
return f"β Error during prediction: {str(e)}", None, None
|
| 199 |
-
|
| 200 |
def main():
|
| 201 |
|
| 202 |
models = load_models()
|
|
@@ -208,7 +168,7 @@ def main():
|
|
| 208 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
| 209 |
gr.Markdown(
|
| 210 |
"""
|
| 211 |
-
Upload images
|
| 212 |
"""
|
| 213 |
)
|
| 214 |
|
|
@@ -247,53 +207,29 @@ def main():
|
|
| 247 |
info="Adjust the minimum confidence required for detections to be displayed."
|
| 248 |
)
|
| 249 |
|
| 250 |
-
with gr.
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
type='pil',
|
| 256 |
-
label="Upload Image for Prediction"
|
| 257 |
-
|
| 258 |
-
)
|
| 259 |
-
image_predict_btn = gr.Button("π Predict on Image")
|
| 260 |
-
image_status = gr.Markdown("**Status will appear here.**")
|
| 261 |
-
image_output = gr.Image(label="Predicted Image")
|
| 262 |
-
image_download_btn = gr.File(label="β¬οΈ Download Predicted Image")
|
| 263 |
-
|
| 264 |
-
def process_image(selected_display_name, image, confidence):
|
| 265 |
-
if not selected_display_name:
|
| 266 |
-
return "β Please select a model.", None, None
|
| 267 |
-
model_name = display_to_name.get(selected_display_name)
|
| 268 |
-
return predict_image(model_name, image, confidence, models)
|
| 269 |
-
|
| 270 |
-
image_predict_btn.click(
|
| 271 |
-
fn=process_image,
|
| 272 |
-
inputs=[model_dropdown, image_input, confidence_slider],
|
| 273 |
-
outputs=[image_status, image_output, image_download_btn]
|
| 274 |
-
)
|
| 275 |
|
| 276 |
-
with gr.Tab("π₯ Video"):
|
| 277 |
-
with gr.Column():
|
| 278 |
-
video_input = gr.Video(
|
| 279 |
-
label="Upload Video for Prediction"
|
| 280 |
-
)
|
| 281 |
-
video_predict_btn = gr.Button("π Predict on Video")
|
| 282 |
-
video_status = gr.Markdown("**Status will appear here.**")
|
| 283 |
-
video_output = gr.Video(label="Predicted Video")
|
| 284 |
-
video_download_btn = gr.File(label="β¬οΈ Download Predicted Video")
|
| 285 |
-
|
| 286 |
-
def process_video(selected_display_name, video, confidence):
|
| 287 |
-
if not selected_display_name:
|
| 288 |
-
return "β Please select a model.", None, None
|
| 289 |
-
model_name = display_to_name.get(selected_display_name)
|
| 290 |
-
return predict_video(model_name, video, confidence, models)
|
| 291 |
-
|
| 292 |
-
video_predict_btn.click(
|
| 293 |
-
fn=process_video,
|
| 294 |
-
inputs=[model_dropdown, video_input, confidence_slider],
|
| 295 |
-
outputs=[video_status, video_output, video_download_btn]
|
| 296 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
gr.Markdown(
|
| 299 |
"""
|
|
@@ -305,4 +241,4 @@ def main():
|
|
| 305 |
demo.launch()
|
| 306 |
|
| 307 |
if __name__ == "__main__":
|
| 308 |
-
main()
|
|
|
|
| 157 |
except Exception as e:
|
| 158 |
return f"β Error during prediction: {str(e)}", None, None
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
def main():
|
| 161 |
|
| 162 |
models = load_models()
|
|
|
|
| 168 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
| 169 |
gr.Markdown(
|
| 170 |
"""
|
| 171 |
+
Upload images to test different YOLOv11 models. Select a model from the dropdown to see its details.
|
| 172 |
"""
|
| 173 |
)
|
| 174 |
|
|
|
|
| 207 |
info="Adjust the minimum confidence required for detections to be displayed."
|
| 208 |
)
|
| 209 |
|
| 210 |
+
with gr.Tab("πΌοΈ Image"):
|
| 211 |
+
with gr.Column():
|
| 212 |
+
image_input = gr.Image(
|
| 213 |
+
type='pil',
|
| 214 |
+
label="Upload Image for Prediction"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
)
|
| 217 |
+
image_predict_btn = gr.Button("π Predict on Image")
|
| 218 |
+
image_status = gr.Markdown("**Status will appear here.**")
|
| 219 |
+
image_output = gr.Image(label="Predicted Image")
|
| 220 |
+
image_download_btn = gr.File(label="β¬οΈ Download Predicted Image")
|
| 221 |
+
|
| 222 |
+
def process_image(selected_display_name, image, confidence):
|
| 223 |
+
if not selected_display_name:
|
| 224 |
+
return "β Please select a model.", None, None
|
| 225 |
+
model_name = display_to_name.get(selected_display_name)
|
| 226 |
+
return predict_image(model_name, image, confidence, models)
|
| 227 |
+
|
| 228 |
+
image_predict_btn.click(
|
| 229 |
+
fn=process_image,
|
| 230 |
+
inputs=[model_dropdown, image_input, confidence_slider],
|
| 231 |
+
outputs=[image_status, image_output, image_download_btn]
|
| 232 |
+
)
|
| 233 |
|
| 234 |
gr.Markdown(
|
| 235 |
"""
|
|
|
|
| 241 |
demo.launch()
|
| 242 |
|
| 243 |
if __name__ == "__main__":
|
| 244 |
+
main()
|