rolo-models / app.py
wuhp's picture
Update app.py
b9b01da verified
raw
history blame
13.7 kB
import gradio as gr
import json
import os
from pathlib import Path
from PIL import Image
import shutil
from ultralytics import YOLO
import requests
# Constants
MODELS_DIR = "models"
MODELS_INFO_FILE = "models_info.json"
TEMP_DIR = "temp"
OUTPUT_DIR = "outputs"
def download_file(url, dest_path):
"""
Download a file from a URL to the destination path.
Args:
url (str): The URL to download from.
dest_path (str): The local path to save the file.
Returns:
bool: True if download succeeded, False otherwise.
"""
try:
response = requests.get(url, stream=True)
response.raise_for_status() # Raise an error on bad status
with open(dest_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {url} to {dest_path}.")
return True
except Exception as e:
print(f"Failed to download {url}. Error: {e}")
return False
def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
"""
Load YOLO models and their information from the specified directory and JSON file.
Downloads models if they are not already present.
Args:
models_dir (str): Path to the models directory.
info_file (str): Path to the JSON file containing model info.
Returns:
dict: A dictionary of models and their associated information.
"""
with open(info_file, 'r') as f:
models_info = json.load(f)
models = {}
for model_info in models_info:
model_name = model_info['model_name']
display_name = model_info.get('display_name', model_name)
model_dir = os.path.join(models_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, f"{model_name}.pt") # e.g., models/human/human.pt
download_url = model_info['download_url']
# Check if the model file exists
if not os.path.isfile(model_path):
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
success = download_file(download_url, model_path)
if not success:
print(f"Skipping model '{display_name}' due to download failure.")
continue # Skip loading this model
try:
# Load the YOLO model
model = YOLO(model_path)
models[model_name] = {
'display_name': display_name,
'model': model,
'info': model_info
}
print(f"Loaded model '{display_name}' from '{model_path}'.")
except Exception as e:
print(f"Error loading model '{display_name}': {e}")
return models
def get_model_info(model_info):
"""
Retrieve formatted model information for display.
Args:
model_info (dict): The model's information dictionary.
Returns:
str: A formatted string containing model details.
"""
info = model_info
class_ids = info.get('class_ids', {})
class_image_counts = info.get('class_image_counts', {})
datasets_used = info.get('datasets_used', [])
class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
info_text = (
f"**{info.get('display_name', 'Model Name')}**\n\n"
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
f"**Training Epochs:** {info.get('training_epochs', 'N/A')}\n\n"
f"**Batch Size:** {info.get('batch_size', 'N/A')}\n\n"
f"**Optimizer:** {info.get('optimizer', 'N/A')}\n\n"
f"**Learning Rate:** {info.get('learning_rate', 'N/A')}\n\n"
f"**Data Augmentation Level:** {info.get('data_augmentation_level', 'N/A')}\n\n"
f"**[email protected]:** {info.get('mAP_score', 'N/A')}\n\n"
f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
f"**Class IDs:**\n{class_ids_formatted}\n\n"
f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
f"**Class Image Counts:**\n{class_image_counts_formatted}"
)
return info_text
def predict_image(model_name, image, confidence, models):
"""
Perform prediction on an uploaded image using the selected YOLO model.
Args:
model_name (str): The name of the selected model.
image (PIL.Image.Image): The uploaded image.
confidence (float): The confidence threshold for detections.
models (dict): The dictionary containing models and their info.
Returns:
tuple: A status message, the processed image, and the path to the output image.
"""
model_entry = models.get(model_name, {})
model = model_entry.get('model', None)
if not model:
return "Error: Model not found.", None, None
try:
# Ensure temporary and output directories exist
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Save the uploaded image to a temporary path
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
image.save(input_image_path)
# Perform prediction with user-specified confidence
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
# Determine the output path
# Ultralytics YOLO saves the results in 'runs/detect/predict' by default
# We'll move the result to OUTPUT_DIR with a unique name
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
if not os.path.isfile(output_image_path):
# Alternative method to get the output path
output_image_path = results[0].save()[0]
# Copy the output image to OUTPUT_DIR
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
shutil.copy(output_image_path, final_output_path)
# Open the output image
output_image = Image.open(final_output_path)
return "βœ… Prediction completed successfully.", output_image, final_output_path
except Exception as e:
return f"❌ Error during prediction: {str(e)}", None, None
def predict_video(model_name, video, confidence, models):
"""
Perform prediction on an uploaded video using the selected YOLO model.
Args:
model_name (str): The name of the selected model.
video (str): Path to the uploaded video file.
confidence (float): The confidence threshold for detections.
models (dict): The dictionary containing models and their info.
Returns:
tuple: A status message, the processed video, and the path to the output video.
"""
model_entry = models.get(model_name, {})
model = model_entry.get('model', None)
if not model:
return "Error: Model not found.", None, None
try:
# Ensure temporary and output directories exist
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Save the uploaded video to a temporary path
input_video_path = os.path.join(TEMP_DIR, f"{model_name}_input_video.mp4")
shutil.copy(video, input_video_path)
# Perform prediction with user-specified confidence
results = model(input_video_path, save=True, save_txt=False, conf=confidence)
# Determine the output path
# Ultralytics YOLO saves the results in 'runs/detect/predict' by default
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
output_video_path = os.path.join(latest_run, Path(input_video_path).name)
if not os.path.isfile(output_video_path):
# Alternative method to get the output path
output_video_path = results[0].save()[0]
# Copy the output video to OUTPUT_DIR
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_video.mp4")
shutil.copy(output_video_path, final_output_path)
return "βœ… Prediction completed successfully.", final_output_path, final_output_path
except Exception as e:
return f"❌ Error during prediction: {str(e)}", None, None
def main():
# Load the models and their information
models = load_models()
if not models:
print("No models loaded. Please check your models_info.json and model URLs.")
return
# Initialize Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# πŸ§ͺ YOLOv11 Model Tester")
gr.Markdown(
"""
Upload images or videos to test different YOLOv11 models. Select a model from the dropdown to see its details.
"""
)
# Model selection and info
with gr.Row():
model_dropdown = gr.Dropdown(
choices=[models[m]['display_name'] for m in models],
label="Select Model",
value=None
)
model_info = gr.Markdown("**Model Information will appear here.**")
# Mapping from display_name to model_name
display_to_name = {models[m]['display_name']: m for m in models}
# Update model_info when a model is selected
def update_model_info(selected_display_name):
if not selected_display_name:
return "Please select a model."
model_name = display_to_name.get(selected_display_name)
if not model_name:
return "Model information not available."
model_entry = models[model_name]['info']
return get_model_info(model_entry)
model_dropdown.change(
fn=update_model_info,
inputs=model_dropdown,
outputs=model_info
)
# Confidence Threshold Slider
with gr.Row():
confidence_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.25,
label="Confidence Threshold",
info="Adjust the minimum confidence required for detections to be displayed."
)
# Tabs for different input types
with gr.Tabs():
# Image Prediction Tab
with gr.Tab("πŸ–ΌοΈ Image"):
with gr.Column():
image_input = gr.Image(
type='pil',
label="Upload Image for Prediction"
# Removed 'tool' parameter
)
image_predict_btn = gr.Button("πŸ” Predict on Image")
image_status = gr.Markdown("**Status will appear here.**")
image_output = gr.Image(label="Predicted Image")
image_download_btn = gr.File(label="⬇️ Download Predicted Image")
# Define the image prediction function
def process_image(selected_display_name, image, confidence):
if not selected_display_name:
return "❌ Please select a model.", None, None
model_name = display_to_name.get(selected_display_name)
return predict_image(model_name, image, confidence, models)
# Connect the predict button
image_predict_btn.click(
fn=process_image,
inputs=[model_dropdown, image_input, confidence_slider],
outputs=[image_status, image_output, image_download_btn]
)
# Video Prediction Tab
with gr.Tab("πŸŽ₯ Video"):
with gr.Column():
video_input = gr.Video(
label="Upload Video for Prediction"
)
video_predict_btn = gr.Button("πŸ” Predict on Video")
video_status = gr.Markdown("**Status will appear here.**")
video_output = gr.Video(label="Predicted Video")
video_download_btn = gr.File(label="⬇️ Download Predicted Video")
# Define the video prediction function
def process_video(selected_display_name, video, confidence):
if not selected_display_name:
return "❌ Please select a model.", None, None
model_name = display_to_name.get(selected_display_name)
return predict_video(model_name, video, confidence, models)
# Connect the predict button
video_predict_btn.click(
fn=process_video,
inputs=[model_dropdown, video_input, confidence_slider],
outputs=[video_status, video_output, video_download_btn]
)
gr.Markdown(
"""
---
**Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
"""
)
# Launch the Gradio app
demo.launch()
if __name__ == "__main__":
main()