Spaces:
Sleeping
Sleeping
File size: 6,482 Bytes
bc6cd18 43b1849 bc6cd18 43b1849 bc6cd18 43b1849 bc6cd18 43b1849 a711e94 bc6cd18 43b1849 bc6cd18 ac01980 a711e94 6d361b8 ac01980 6d361b8 43b1849 ac01980 99c4ece ac01980 a711e94 99c4ece ac01980 bc6cd18 6d361b8 bc6cd18 a711e94 bc6cd18 a711e94 bc6cd18 a711e94 6d361b8 a711e94 ac01980 a711e94 6d361b8 a711e94 228a29d a711e94 6d361b8 bc6cd18 6d361b8 a711e94 bc6cd18 a711e94 43b1849 a711e94 bc6cd18 a711e94 ac01980 a711e94 bc6cd18 a711e94 6d361b8 a711e94 bc6cd18 43b1849 bc6cd18 a711e94 bc6cd18 a711e94 ac01980 a711e94 ac01980 a711e94 ac01980 a711e94 ac01980 a711e94 ac01980 a711e94 ac01980 a711e94 ac01980 a711e94 ac01980 bc6cd18 a711e94 ac01980 a711e94 7838f2e bc6cd18 a711e94 bc6cd18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import json
import random
import shutil
import tempfile
from urllib.parse import urlparse
import cv2
import numpy as np
from PIL import Image
import gradio as gr
from roboflow import Roboflow
def parse_roboflow_url(url: str):
"""Extract workspace, project name, and version from a Roboflow URL."""
parsed = urlparse(url)
parts = parsed.path.strip('/').split('/')
workspace = parts[0]
project = parts[1]
try:
version = int(parts[-1])
except ValueError:
version = int(parts[-2])
return workspace, project, version
def convert_seg_to_bbox(api_key: str, dataset_url: str):
"""
1) Download segmentation dataset from Roboflow
2) Convert masks β YOLOv8 bboxes
Returns before_gallery, after_gallery, local_dataset_path, project_slug
"""
rf = Roboflow(api_key=api_key)
ws, proj, ver = parse_roboflow_url(dataset_url)
version_obj = rf.workspace(ws).project(proj).version(ver)
dataset = version_obj.download("coco-segmentation")
root = dataset.location
# find annotation JSON
ann_file = None
for dp, _, files in os.walk(root):
for f in files:
if 'train' in f.lower() and f.lower().endswith('.json'):
ann_file = os.path.join(dp, f)
break
if ann_file:
break
if not ann_file:
for dp, _, files in os.walk(root):
for f in files:
if f.lower().endswith('.json'):
ann_file = os.path.join(dp, f)
break
if ann_file:
break
if not ann_file:
raise FileNotFoundError(f"No JSON annotations found under {root}")
coco = json.load(open(ann_file, 'r'))
images_info = {img['id']: img for img in coco['images']}
cat_ids = sorted(c['id'] for c in coco.get('categories', []))
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
# prepare YOLOv8 folders
out_root = tempfile.mkdtemp(prefix="yolov8_")
img_out = os.path.join(out_root, "images")
lbl_out = os.path.join(out_root, "labels")
os.makedirs(img_out, exist_ok=True)
os.makedirs(lbl_out, exist_ok=True)
# convert seg β bbox
annos = {}
for a in coco['annotations']:
pid = a['image_id']
poly = a['segmentation'][0]
xs, ys = poly[0::2], poly[1::2]
xmin, xmax, ymin, ymax = min(xs), max(xs), min(ys), max(ys)
w, h = xmax - xmin, ymax - ymin
cx, cy = xmin + w/2, ymin + h/2
iw, ih = images_info[pid]['width'], images_info[pid]['height']
line = f"{id_to_index[a['category_id']]} {cx/iw:.6f} {cy/ih:.6f} {w/iw:.6f} {h/ih:.6f}"
annos.setdefault(pid, []).append(line)
# locate images and write labels
img_dir = None
for dp, _, files in os.walk(root):
if any(f.lower().endswith(('.jpg','.png','jpeg')) for f in files):
img_dir = dp
break
if not img_dir:
raise FileNotFoundError(f"No image files found under {root}")
fname2id = {img['file_name']: img['id'] for img in coco['images']}
for fname, pid in fname2id.items():
src = os.path.join(img_dir, fname)
if not os.path.isfile(src):
continue
shutil.copy(src, os.path.join(img_out, fname))
with open(os.path.join(lbl_out, fname.rsplit('.',1)[0] + ".txt"), 'w') as lf:
lf.write("\n".join(annos.get(pid, [])))
# build preview galleries
before, after = [], []
sample = random.sample(list(fname2id.keys()), min(5, len(fname2id)))
for fn in sample:
img = cv2.cvtColor(cv2.imread(os.path.join(img_dir, fn)), cv2.COLOR_BGR2RGB)
seg_vis = img.copy()
for a in coco['annotations']:
if a['image_id'] != fname2id[fn]:
continue
pts = np.array(a['segmentation'][0], np.int32).reshape(-1,2)
cv2.polylines(seg_vis, [pts], True, (255,0,0), 2)
box_vis = img.copy()
for line in annos.get(fname2id[fn], []):
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
iw, ih = images_info[fname2id[fn]]['width'], images_info[fname2id[fn]]['height']
w0, h0 = int(wnorm*iw), int(hnorm*ih)
x0, y0 = int(cxn*iw - w0/2), int(cyn*ih - h0/2)
cv2.rectangle(box_vis, (x0,y0), (x0+w0,y0+h0), (0,255,0), 2)
before.append(Image.fromarray(seg_vis))
after.append(Image.fromarray(box_vis))
return before, after, out_root, proj # proj is our slug
def upload_and_train_detection(api_key: str, project_slug: str, dataset_path: str):
"""
1) Upload local YOLOv8 dataset to Roboflow
2) Generate & train a new detection version
Returns the hosted inference endpoint URL.
"""
rf = Roboflow(api_key=api_key)
ws = rf.workspace()
# upload dataset
ws.upload_dataset(
dataset_path,
project_slug,
project_license="MIT",
project_type="object-detection"
)
# generate a new version
proj = ws.project(project_slug)
version_number = proj.generate_version(preprocessing={}, augmentation={})
# train model (fast)
proj.version(version_number).train(speed="fast")
# fetch hosted endpoint
m = proj.version(str(version_number)).model
return f"{m['base_url']}{m['id']}?api_key={api_key}"
with gr.Blocks() as app:
gr.Markdown("## π Segmentation β YOLOv8 Converter + Auto Trainer")
# Converter UI
api_input = gr.Textbox(label="Roboflow API Key", type="password")
url_input = gr.Textbox(label="Segmentation Dataset URL")
convert_btn = gr.Button("Convert to BBoxes")
before_gal = gr.Gallery(label="Before (Segmentation)", columns=5)
after_gal = gr.Gallery(label="After (BBoxes)", columns=5)
state_path = gr.State()
state_slug = gr.State()
convert_btn.click(
fn=convert_seg_to_bbox,
inputs=[api_input, url_input],
outputs=[before_gal, after_gal, state_path, state_slug]
)
# Train UI
train_btn = gr.Button("Upload & Train Detection Model")
endpoint_text = gr.Textbox(label="Hosted Detection Endpoint URL")
train_btn.click(
fn=upload_and_train_detection,
inputs=[api_input, state_slug, state_path],
outputs=[endpoint_text]
)
gr.Markdown("> First convert your seg data, then click **Upload & Train** to deploy your detection model.")
if __name__ == "__main__":
app.launch()
|