vision-compare / app.py
wuhp's picture
Update app.py
abc9620 verified
raw
history blame
6.57 kB
"""
Gradio app to compare object‑detection models:
• Ultralytics YOLOv12 (n, s, m, l, x)
• Ultralytics YOLOv11 (n, s, m, l, x)
• Roboflow RF‑DETR (Base, Large)
• Custom fine‑tuned checkpoints (.pt/.pth upload)
Revision 2025‑04‑19‑c:
• Re‑indented entire file with 4‑space consistency to remove `IndentationError`.
• Thin, semi‑transparent 60 % boxes; concise error labels.
"""
from __future__ import annotations
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES
###############################################################################
# Model registry & lazy loader
###############################################################################
YOLO_MODEL_MAP: Dict[str, str] = {
"YOLOv12‑n": "yolov12n.pt",
"YOLOv12‑s": "yolov12s.pt",
"YOLOv12‑m": "yolov12m.pt",
"YOLOv12‑l": "yolov12l.pt",
"YOLOv12‑x": "yolov12x.pt",
"YOLOv11‑n": "yolov11n.pt",
"YOLOv11‑s": "yolov11s.pt",
"YOLOv11‑m": "yolov11m.pt",
"YOLOv11‑l": "yolov11l.pt",
"YOLOv11‑x": "yolov11x.pt",
}
RFDETR_MODEL_MAP = {
"RF‑DETR‑Base (29M)": "base",
"RF‑DETR‑Large (128M)": "large",
}
ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
"Custom YOLO (.pt/.pth)",
"Custom RF‑DETR (.pth)",
]
_loaded: Dict[str, object] = {}
def load_model(choice: str, custom_file: Optional[Path] = None):
"""Return and cache a detector matching *choice*."""
if choice in _loaded:
return _loaded[choice]
try:
if choice in YOLO_MODEL_MAP:
model = YOLO(YOLO_MODEL_MAP[choice])
elif choice in RFDETR_MODEL_MAP:
model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
elif choice.startswith("Custom YOLO"):
if custom_file is None:
raise ValueError("Upload a YOLO .pt/.pth checkpoint first.")
model = YOLO(str(custom_file))
elif choice.startswith("Custom RF‑DETR"):
if custom_file is None:
raise ValueError("Upload an RF‑DETR .pth checkpoint first.")
model = RFDETRBase(pretrain_weights=str(custom_file))
else:
raise ValueError(f"Unsupported model choice: {choice}")
except Exception as exc:
raise RuntimeError(str(exc)) from exc
_loaded[choice] = model
return model
###############################################################################
# Inference helpers
###############################################################################
BOX_THICKNESS = 2
BOX_ALPHA = 0.6
box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
label_annotator = sv.LabelAnnotator()
def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray:
return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0)
def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
start = time.perf_counter()
if isinstance(model, (RFDETRBase, RFDETRLarge)):
detections = model.predict(image, threshold=threshold)
label_src = COCO_CLASSES
else:
ul_result = model.predict(image, verbose=False)[0]
detections = sv.Detections.from_ultralytics(ul_result)
label_src = model.names # type: ignore
runtime = time.perf_counter() - start
base_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
overlay = base_bgr.copy()
overlay = box_annotator.annotate(overlay, detections)
overlay = label_annotator.annotate(
overlay,
detections,
[f"{label_src[cid]} {conf:.2f}" for cid, conf in zip(detections.class_id, detections.confidence)],
)
blended = _blend(base_bgr, overlay)
out_pil = Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB))
return out_pil, runtime
###############################################################################
# Gradio callback
###############################################################################
def compare_models(
models: List[str],
img: Image.Image,
threshold: float,
custom_file: Optional[Path],
):
if img is None:
raise gr.Error("Please upload an image first.")
if img.mode != "RGB":
img = img.convert("RGB")
results: List[Image.Image] = []
legends: Dict[str, str] = {}
for model_name in models:
try:
detector = load_model(model_name, custom_file)
annotated, latency = run_single_inference(detector, img, threshold)
results.append(annotated)
legends[model_name] = f"{latency*1000:.1f} ms"
except Exception as exc:
results.append(Image.new("RGB", img.size, (40, 40, 40)))
emsg = str(exc)
if "No such file" in emsg or "not found" in emsg:
legends[model_name] = "Unavailable (weights not found)"
else:
legends[model_name] = f"ERROR: {emsg.splitlines()[0][:120]}"
return results, legends
###############################################################################
# Gradio UI
###############################################################################
def build_demo():
with gr.Blocks(title="CV Model Comparison") as demo:
gr.Markdown(
"""# 🔍 Compare Object‑Detection Models\nUpload an image, choose detectors, and optionally add a custom checkpoint.\nBounding boxes are thin (2 px) and 60 % transparent for clarity."""
)
with gr.Row():
sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence")
ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True)
img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"])
with gr.Row():
gallery = gr.Gallery(label="Results", columns=2, height="auto")
legend_out = gr.JSON(label="Latency / status by model")
run_btn = gr.Button("Run Inference", variant="primary")
run_btn.click(compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out])
return demo
if __name__ == "__main__":
build_demo().launch()