xg220's picture
Update app.py
a5fe1f8 verified
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import re
import requests
import pytz
import yaml
import numpy as np
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def random_normal_draws(arg1: float, arg2: float)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that generates 10 draws from a normal distribution with mean and standard deviation given.
Args:
arg1: the mean of the distribution
arg2: the standard deviation of the distribution (must be positive)
"""
try:
if arg2 <= 0:
return "Error: Standard deviation must be positive."
rand_norm = np.random.normal(loc=arg1, scale=arg2, size=10)
return ", ".join(f"{x:.2f}" for x in rand_norm)
except Exception as e:
return f"Error generating distribution: {e}"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def extract_fnol_info(email_text: str) -> str:
"""Extracts FNOL details (car make, injury type, date of incident) from a natural-language claim email.
Args:
email_text: The body of the claim email.
Returns:
A structured summary with the car make, injury type, and date of incident, or 'missing' if not found.
"""
prompt = f"""
You are an assistant extracting First Notification of Loss (FNOL) information from an email.
Extract the following from the email below:
- Car make and model
- Date of incident (in YYYY-MM-DD format if possible)
- Injury type
If any information is missing, say 'Missing'.
Email:
\"\"\"
{email_text}
\"\"\"
Return in this format:
Car: <car>
Date: <date>
Injury: <injury>
"""
return prompt
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
final_answer,
image_generation_tool,
extract_fnol_info,
get_current_time_in_timezone, # even though it's decorated
random_normal_draws # same here
],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()