File size: 7,721 Bytes
9e3c2e9
b50cb0b
bdb7ac2
 
0be2076
d75aa56
b50cb0b
9e3c2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d75aa56
9e3c2e9
 
b50cb0b
 
 
 
 
 
 
0be2076
 
b50cb0b
5a36a74
b50cb0b
0be2076
b50cb0b
5a36a74
b50cb0b
 
5a36a74
 
 
b50cb0b
5a36a74
b50cb0b
 
0be2076
5a36a74
b50cb0b
5a36a74
 
 
 
b50cb0b
5a36a74
 
b50cb0b
5a36a74
b50cb0b
 
0be2076
5a36a74
be19290
9e3c2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb7ac2
9e3c2e9
bdb7ac2
5a36a74
9e3c2e9
0be2076
9e3c2e9
bdb7ac2
9e3c2e9
b50cb0b
 
 
bdb7ac2
9e3c2e9
 
d75aa56
 
 
bdb7ac2
d75aa56
bdb7ac2
9e3c2e9
 
 
 
b50cb0b
 
 
9e3c2e9
b50cb0b
 
 
 
 
 
 
9e3c2e9
b50cb0b
9e3c2e9
 
0be2076
 
 
9e3c2e9
 
d75aa56
9e3c2e9
 
bdb7ac2
5a36a74
 
b50cb0b
5a36a74
 
 
 
 
b50cb0b
5a36a74
b50cb0b
0be2076
b50cb0b
5a36a74
 
b50cb0b
0be2076
b50cb0b
5a36a74
b50cb0b
 
5a36a74
b50cb0b
5a36a74
bdb7ac2
 
5a36a74
 
0be2076
5a36a74
b50cb0b
 
9e3c2e9
 
0be2076
bdb7ac2
 
b50cb0b
9e3c2e9
 
 
 
 
 
b50cb0b
 
9e3c2e9
 
b50cb0b
0be2076
b50cb0b
9e3c2e9
0be2076
b50cb0b
0be2076
 
 
 
b50cb0b
9e3c2e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from dataclasses import dataclass

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchtune
from huggingface_hub import PyTorchModelHubMixin
from torchtune.models import llama3_2


def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder:
    return llama3_2.llama3_2(
        vocab_size=128_256,
        num_layers=16,
        num_heads=32,
        num_kv_heads=8,
        embed_dim=2048,
        max_seq_len=2048,
        intermediate_dim=8192,
        attn_dropout=0.0,
        norm_eps=1e-5,
        rope_base=500_000,
        scale_factor=32,
    )


def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder:
    return llama3_2.llama3_2(
        vocab_size=128_256,
        num_layers=4,
        num_heads=8,
        num_kv_heads=2,
        embed_dim=1024,
        max_seq_len=2048,
        intermediate_dim=8192,
        attn_dropout=0.0,
        norm_eps=1e-5,
        rope_base=500_000,
        scale_factor=32,
    )


FLAVORS = {
    "llama-1B": llama3_2_1B,
    "llama-100M": llama3_2_100M,
}


def _prepare_transformer(model):
    embed_dim = model.tok_embeddings.embedding_dim
    model.tok_embeddings = nn.Identity()
    model.output = nn.Identity()
    return model, embed_dim


def _create_causal_mask(seq_len: int, device: torch.device):
    return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))


def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
    return mask[input_pos, :]


def sample_topk_topp(
    logits: torch.Tensor,
    topk: int,
    top_p: float,
    temperature: float,
) -> torch.Tensor:
    """
    Apply top-k, then nucleus (top-p), then sample.
    Returns a tensor of shape (batch_size, 1).
    """
    # scale + softmax
    scaled = logits / temperature
    probs = F.softmax(scaled, dim=-1)

    # --- top-k ---
    if topk < probs.size(-1):
        topk_vals, topk_idx = torch.topk(probs, topk, dim=-1)
        mask_k = torch.zeros_like(probs)
        mask_k.scatter_(-1, topk_idx, topk_vals)
        probs = mask_k

    # --- top-p (nucleus) ---
    sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
    cumulative = torch.cumsum(sorted_probs, dim=-1)
    keep = cumulative <= top_p
    keep[..., 0] = True  # always keep highest-prob

    # cast mask to same dtype as sorted_probs
    keep = keep.to(sorted_probs.dtype)

    # build final probabilities in correct dtype
    probs_final = torch.zeros_like(probs)
    src = sorted_probs * keep  # same dtype
    probs_final.scatter_(-1, sorted_idx, src)

    # renormalize
    probs_final = probs_final / probs_final.sum(dim=-1, keepdim=True)

    # sample once per batch, keep that extra dim
    return torch.multinomial(probs_final, num_samples=1)  # shape (batch,1)


@dataclass
class ModelArgs:
    backbone_flavor: str
    decoder_flavor: str
    text_vocab_size: int
    audio_vocab_size: int
    audio_num_codebooks: int


class Model(
    nn.Module,
    PyTorchModelHubMixin,
    repo_url="https://github.com/SesameAILabs/csm",
    pipeline_tag="text-to-speech",
    license="apache-2.0",
):
    def __init__(self, config: ModelArgs):
        super().__init__()
        self.config = config

        # Text+audio backbone
        self.backbone, backbone_dim = _prepare_transformer(FLAVORS[config.backbone_flavor]())
        # Audio decoder
        self.decoder, decoder_dim = _prepare_transformer(FLAVORS[config.decoder_flavor]())

        self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
        self.audio_embeddings = nn.Embedding(
            config.audio_vocab_size * config.audio_num_codebooks, backbone_dim
        )

        self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
        self.codebook0_head = nn.Linear(backbone_dim, config.audio_vocab_size, bias=False)
        self.audio_head = nn.Parameter(
            torch.empty(config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size)
        )

    def setup_caches(self, max_batch_size: int) -> None:
        dtype = next(self.parameters()).dtype
        device = next(self.parameters()).device

        with device:
            self.backbone.setup_caches(max_batch_size, dtype)
            self.decoder.setup_caches(
                max_batch_size, dtype, decoder_max_seq_len=self.config.audio_num_codebooks
            )

        self.register_buffer(
            "backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device)
        )
        self.register_buffer(
            "decoder_causal_mask",
            _create_causal_mask(self.config.audio_num_codebooks, device),
        )

    @torch.inference_mode()
    def generate_frame(
        self,
        tokens: torch.Tensor,           # (batch, seq, codebooks+1)
        tokens_mask: torch.Tensor,      # (batch, seq, codebooks+1)
        input_pos: torch.Tensor,        # (batch, seq)
        temperature: float,
        topk: int,
        top_p: float,
    ) -> torch.Tensor:
        dtype = next(self.parameters()).dtype

        # Backbone pass
        bb_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
        embeds = self._embed_tokens(tokens)
        h = self.backbone(
            (embeds * tokens_mask.unsqueeze(-1)).sum(dim=2),
            input_pos=input_pos,
            mask=bb_mask,
        ).to(dtype=dtype)

        # Last hidden state
        last_h = h[:, -1, :]               # (batch, hidden)
        last_h_unsq = last_h.unsqueeze(1)  # (batch,1,hidden)

        # --- codebook 0 ---
        c0_logits = self.codebook0_head(last_h)  # (batch, vocab)
        c0_sample = sample_topk_topp(c0_logits, topk, top_p, temperature)  # (batch,1)
        c0_embed = self._embed_audio(0, c0_sample.squeeze(-1)).unsqueeze(1)  # (batch,1,hidden)

        # Prepare decoder input
        curr_h = torch.cat([last_h_unsq, c0_embed], dim=1)  # (batch,2,hidden)
        curr_sample = c0_sample.clone()                     # (batch,1)
        curr_pos = torch.arange(0, curr_h.size(1)).unsqueeze(0).to(tokens.device).long()

        # --- remaining codebooks ---
        self.decoder.reset_caches()
        for i in range(1, self.config.audio_num_codebooks):
            dec_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
            dec_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=dec_mask).to(dtype=dtype)

            ci_logits = torch.mm(dec_h[:, -1, :], self.audio_head[i - 1])
            ci_sample = sample_topk_topp(ci_logits, topk, top_p, temperature)  # (batch,1)
            ci_embed = self._embed_audio(i, ci_sample.squeeze(-1)).unsqueeze(1)  # (batch,1,hidden)

            curr_h = ci_embed
            curr_sample = torch.cat([curr_sample, ci_sample], dim=1)  # (batch,i+1)
            curr_pos = curr_pos[:, -1:] + 1

        return curr_sample  # (batch, audio_num_codebooks)

    def reset_caches(self):
        self.backbone.reset_caches()
        self.decoder.reset_caches()

    def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
        ids = tokens + codebook * self.config.audio_vocab_size
        return self.audio_embeddings(ids)

    def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
        text_ids = tokens[:, :, -1]
        text_emb = self.text_embeddings(text_ids).unsqueeze(-2)
        audio_ids = tokens[:, :, :-1] + (
            self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device)
        )
        audio_emb = (
            self.audio_embeddings(audio_ids.reshape(-1))
            .reshape(tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1)
        )
        return torch.cat([audio_emb, text_emb], dim=2)