tahm_kench / models.py
xlr8
and again
5a36a74
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchtune
from huggingface_hub import PyTorchModelHubMixin
from torchtune.models import llama3_2
def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder:
return llama3_2.llama3_2(
vocab_size=128_256,
num_layers=16,
num_heads=32,
num_kv_heads=8,
embed_dim=2048,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=500_000,
scale_factor=32,
)
def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder:
return llama3_2.llama3_2(
vocab_size=128_256,
num_layers=4,
num_heads=8,
num_kv_heads=2,
embed_dim=1024,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=500_000,
scale_factor=32,
)
FLAVORS = {
"llama-1B": llama3_2_1B,
"llama-100M": llama3_2_100M,
}
def _prepare_transformer(model):
embed_dim = model.tok_embeddings.embedding_dim
model.tok_embeddings = nn.Identity()
model.output = nn.Identity()
return model, embed_dim
def _create_causal_mask(seq_len: int, device: torch.device):
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
return mask[input_pos, :]
def sample_topk_topp(
logits: torch.Tensor,
topk: int,
top_p: float,
temperature: float,
) -> torch.Tensor:
"""
Apply top-k, then nucleus (top-p), then sample.
Returns a tensor of shape (batch_size, 1).
"""
# scale + softmax
scaled = logits / temperature
probs = F.softmax(scaled, dim=-1)
# --- top-k ---
if topk < probs.size(-1):
topk_vals, topk_idx = torch.topk(probs, topk, dim=-1)
mask_k = torch.zeros_like(probs)
mask_k.scatter_(-1, topk_idx, topk_vals)
probs = mask_k
# --- top-p (nucleus) ---
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
cumulative = torch.cumsum(sorted_probs, dim=-1)
keep = cumulative <= top_p
keep[..., 0] = True # always keep highest-prob
# cast mask to same dtype as sorted_probs
keep = keep.to(sorted_probs.dtype)
# build final probabilities in correct dtype
probs_final = torch.zeros_like(probs)
src = sorted_probs * keep # same dtype
probs_final.scatter_(-1, sorted_idx, src)
# renormalize
probs_final = probs_final / probs_final.sum(dim=-1, keepdim=True)
# sample once per batch, keep that extra dim
return torch.multinomial(probs_final, num_samples=1) # shape (batch,1)
@dataclass
class ModelArgs:
backbone_flavor: str
decoder_flavor: str
text_vocab_size: int
audio_vocab_size: int
audio_num_codebooks: int
class Model(
nn.Module,
PyTorchModelHubMixin,
repo_url="https://github.com/SesameAILabs/csm",
pipeline_tag="text-to-speech",
license="apache-2.0",
):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
# Text+audio backbone
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[config.backbone_flavor]())
# Audio decoder
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[config.decoder_flavor]())
self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
self.audio_embeddings = nn.Embedding(
config.audio_vocab_size * config.audio_num_codebooks, backbone_dim
)
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
self.codebook0_head = nn.Linear(backbone_dim, config.audio_vocab_size, bias=False)
self.audio_head = nn.Parameter(
torch.empty(config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size)
)
def setup_caches(self, max_batch_size: int) -> None:
dtype = next(self.parameters()).dtype
device = next(self.parameters()).device
with device:
self.backbone.setup_caches(max_batch_size, dtype)
self.decoder.setup_caches(
max_batch_size, dtype, decoder_max_seq_len=self.config.audio_num_codebooks
)
self.register_buffer(
"backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device)
)
self.register_buffer(
"decoder_causal_mask",
_create_causal_mask(self.config.audio_num_codebooks, device),
)
@torch.inference_mode()
def generate_frame(
self,
tokens: torch.Tensor, # (batch, seq, codebooks+1)
tokens_mask: torch.Tensor, # (batch, seq, codebooks+1)
input_pos: torch.Tensor, # (batch, seq)
temperature: float,
topk: int,
top_p: float,
) -> torch.Tensor:
dtype = next(self.parameters()).dtype
# Backbone pass
bb_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
embeds = self._embed_tokens(tokens)
h = self.backbone(
(embeds * tokens_mask.unsqueeze(-1)).sum(dim=2),
input_pos=input_pos,
mask=bb_mask,
).to(dtype=dtype)
# Last hidden state
last_h = h[:, -1, :] # (batch, hidden)
last_h_unsq = last_h.unsqueeze(1) # (batch,1,hidden)
# --- codebook 0 ---
c0_logits = self.codebook0_head(last_h) # (batch, vocab)
c0_sample = sample_topk_topp(c0_logits, topk, top_p, temperature) # (batch,1)
c0_embed = self._embed_audio(0, c0_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden)
# Prepare decoder input
curr_h = torch.cat([last_h_unsq, c0_embed], dim=1) # (batch,2,hidden)
curr_sample = c0_sample.clone() # (batch,1)
curr_pos = torch.arange(0, curr_h.size(1)).unsqueeze(0).to(tokens.device).long()
# --- remaining codebooks ---
self.decoder.reset_caches()
for i in range(1, self.config.audio_num_codebooks):
dec_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
dec_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=dec_mask).to(dtype=dtype)
ci_logits = torch.mm(dec_h[:, -1, :], self.audio_head[i - 1])
ci_sample = sample_topk_topp(ci_logits, topk, top_p, temperature) # (batch,1)
ci_embed = self._embed_audio(i, ci_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden)
curr_h = ci_embed
curr_sample = torch.cat([curr_sample, ci_sample], dim=1) # (batch,i+1)
curr_pos = curr_pos[:, -1:] + 1
return curr_sample # (batch, audio_num_codebooks)
def reset_caches(self):
self.backbone.reset_caches()
self.decoder.reset_caches()
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
ids = tokens + codebook * self.config.audio_vocab_size
return self.audio_embeddings(ids)
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
text_ids = tokens[:, :, -1]
text_emb = self.text_embeddings(text_ids).unsqueeze(-2)
audio_ids = tokens[:, :, :-1] + (
self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device)
)
audio_emb = (
self.audio_embeddings(audio_ids.reshape(-1))
.reshape(tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1)
)
return torch.cat([audio_emb, text_emb], dim=2)