Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchtune | |
from huggingface_hub import PyTorchModelHubMixin | |
from torchtune.models import llama3_2 | |
def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder: | |
return llama3_2.llama3_2( | |
vocab_size=128_256, | |
num_layers=16, | |
num_heads=32, | |
num_kv_heads=8, | |
embed_dim=2048, | |
max_seq_len=2048, | |
intermediate_dim=8192, | |
attn_dropout=0.0, | |
norm_eps=1e-5, | |
rope_base=500_000, | |
scale_factor=32, | |
) | |
def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder: | |
return llama3_2.llama3_2( | |
vocab_size=128_256, | |
num_layers=4, | |
num_heads=8, | |
num_kv_heads=2, | |
embed_dim=1024, | |
max_seq_len=2048, | |
intermediate_dim=8192, | |
attn_dropout=0.0, | |
norm_eps=1e-5, | |
rope_base=500_000, | |
scale_factor=32, | |
) | |
FLAVORS = { | |
"llama-1B": llama3_2_1B, | |
"llama-100M": llama3_2_100M, | |
} | |
def _prepare_transformer(model): | |
embed_dim = model.tok_embeddings.embedding_dim | |
model.tok_embeddings = nn.Identity() | |
model.output = nn.Identity() | |
return model, embed_dim | |
def _create_causal_mask(seq_len: int, device: torch.device): | |
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) | |
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor): | |
return mask[input_pos, :] | |
def sample_topk_topp( | |
logits: torch.Tensor, | |
topk: int, | |
top_p: float, | |
temperature: float, | |
) -> torch.Tensor: | |
""" | |
Apply top-k, then nucleus (top-p), then sample. | |
Returns a tensor of shape (batch_size, 1). | |
""" | |
# scale + softmax | |
scaled = logits / temperature | |
probs = F.softmax(scaled, dim=-1) | |
# --- top-k --- | |
if topk < probs.size(-1): | |
topk_vals, topk_idx = torch.topk(probs, topk, dim=-1) | |
mask_k = torch.zeros_like(probs) | |
mask_k.scatter_(-1, topk_idx, topk_vals) | |
probs = mask_k | |
# --- top-p (nucleus) --- | |
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1) | |
cumulative = torch.cumsum(sorted_probs, dim=-1) | |
keep = cumulative <= top_p | |
keep[..., 0] = True # always keep highest-prob | |
# cast mask to same dtype as sorted_probs | |
keep = keep.to(sorted_probs.dtype) | |
# build final probabilities in correct dtype | |
probs_final = torch.zeros_like(probs) | |
src = sorted_probs * keep # same dtype | |
probs_final.scatter_(-1, sorted_idx, src) | |
# renormalize | |
probs_final = probs_final / probs_final.sum(dim=-1, keepdim=True) | |
# sample once per batch, keep that extra dim | |
return torch.multinomial(probs_final, num_samples=1) # shape (batch,1) | |
class ModelArgs: | |
backbone_flavor: str | |
decoder_flavor: str | |
text_vocab_size: int | |
audio_vocab_size: int | |
audio_num_codebooks: int | |
class Model( | |
nn.Module, | |
PyTorchModelHubMixin, | |
repo_url="https://github.com/SesameAILabs/csm", | |
pipeline_tag="text-to-speech", | |
license="apache-2.0", | |
): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
self.config = config | |
# Text+audio backbone | |
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[config.backbone_flavor]()) | |
# Audio decoder | |
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[config.decoder_flavor]()) | |
self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim) | |
self.audio_embeddings = nn.Embedding( | |
config.audio_vocab_size * config.audio_num_codebooks, backbone_dim | |
) | |
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False) | |
self.codebook0_head = nn.Linear(backbone_dim, config.audio_vocab_size, bias=False) | |
self.audio_head = nn.Parameter( | |
torch.empty(config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size) | |
) | |
def setup_caches(self, max_batch_size: int) -> None: | |
dtype = next(self.parameters()).dtype | |
device = next(self.parameters()).device | |
with device: | |
self.backbone.setup_caches(max_batch_size, dtype) | |
self.decoder.setup_caches( | |
max_batch_size, dtype, decoder_max_seq_len=self.config.audio_num_codebooks | |
) | |
self.register_buffer( | |
"backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device) | |
) | |
self.register_buffer( | |
"decoder_causal_mask", | |
_create_causal_mask(self.config.audio_num_codebooks, device), | |
) | |
def generate_frame( | |
self, | |
tokens: torch.Tensor, # (batch, seq, codebooks+1) | |
tokens_mask: torch.Tensor, # (batch, seq, codebooks+1) | |
input_pos: torch.Tensor, # (batch, seq) | |
temperature: float, | |
topk: int, | |
top_p: float, | |
) -> torch.Tensor: | |
dtype = next(self.parameters()).dtype | |
# Backbone pass | |
bb_mask = _index_causal_mask(self.backbone_causal_mask, input_pos) | |
embeds = self._embed_tokens(tokens) | |
h = self.backbone( | |
(embeds * tokens_mask.unsqueeze(-1)).sum(dim=2), | |
input_pos=input_pos, | |
mask=bb_mask, | |
).to(dtype=dtype) | |
# Last hidden state | |
last_h = h[:, -1, :] # (batch, hidden) | |
last_h_unsq = last_h.unsqueeze(1) # (batch,1,hidden) | |
# --- codebook 0 --- | |
c0_logits = self.codebook0_head(last_h) # (batch, vocab) | |
c0_sample = sample_topk_topp(c0_logits, topk, top_p, temperature) # (batch,1) | |
c0_embed = self._embed_audio(0, c0_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden) | |
# Prepare decoder input | |
curr_h = torch.cat([last_h_unsq, c0_embed], dim=1) # (batch,2,hidden) | |
curr_sample = c0_sample.clone() # (batch,1) | |
curr_pos = torch.arange(0, curr_h.size(1)).unsqueeze(0).to(tokens.device).long() | |
# --- remaining codebooks --- | |
self.decoder.reset_caches() | |
for i in range(1, self.config.audio_num_codebooks): | |
dec_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos) | |
dec_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=dec_mask).to(dtype=dtype) | |
ci_logits = torch.mm(dec_h[:, -1, :], self.audio_head[i - 1]) | |
ci_sample = sample_topk_topp(ci_logits, topk, top_p, temperature) # (batch,1) | |
ci_embed = self._embed_audio(i, ci_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden) | |
curr_h = ci_embed | |
curr_sample = torch.cat([curr_sample, ci_sample], dim=1) # (batch,i+1) | |
curr_pos = curr_pos[:, -1:] + 1 | |
return curr_sample # (batch, audio_num_codebooks) | |
def reset_caches(self): | |
self.backbone.reset_caches() | |
self.decoder.reset_caches() | |
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor: | |
ids = tokens + codebook * self.config.audio_vocab_size | |
return self.audio_embeddings(ids) | |
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor: | |
text_ids = tokens[:, :, -1] | |
text_emb = self.text_embeddings(text_ids).unsqueeze(-2) | |
audio_ids = tokens[:, :, :-1] + ( | |
self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device) | |
) | |
audio_emb = ( | |
self.audio_embeddings(audio_ids.reshape(-1)) | |
.reshape(tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1) | |
) | |
return torch.cat([audio_emb, text_emb], dim=2) | |