File size: 16,890 Bytes
545fc5b
adead6c
545fc5b
adead6c
 
 
 
 
 
 
 
d1a05cc
 
545fc5b
 
 
adead6c
d1a05cc
 
 
 
 
adead6c
 
 
 
 
 
 
 
 
 
d1a05cc
 
adead6c
 
d1a05cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adead6c
d1a05cc
 
 
 
 
 
 
 
 
 
 
 
 
 
adead6c
d1a05cc
adead6c
 
d1a05cc
545fc5b
 
 
d1a05cc
545fc5b
 
 
 
 
 
adead6c
 
545fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adead6c
 
545fc5b
 
 
 
 
 
 
 
 
 
 
 
adead6c
 
545fc5b
d1a05cc
545fc5b
d1a05cc
 
 
 
 
545fc5b
 
 
adead6c
545fc5b
 
 
 
adead6c
d1a05cc
 
545fc5b
 
d1a05cc
 
545fc5b
 
 
 
 
 
adead6c
 
545fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adead6c
d1a05cc
545fc5b
 
 
 
 
 
 
 
adead6c
 
d1a05cc
545fc5b
 
 
 
 
 
 
 
d1a05cc
545fc5b
 
 
adead6c
545fc5b
adead6c
545fc5b
 
d1a05cc
 
 
 
 
545fc5b
d1a05cc
 
 
 
 
545fc5b
 
adead6c
545fc5b
 
 
 
adead6c
d1a05cc
 
 
 
 
545fc5b
 
 
 
 
d1a05cc
545fc5b
 
 
 
 
adead6c
545fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adead6c
 
545fc5b
d1a05cc
545fc5b
 
 
 
 
 
 
 
adead6c
d1a05cc
 
 
545fc5b
 
adead6c
d1a05cc
adead6c
 
545fc5b
d1a05cc
 
 
 
545fc5b
 
d1a05cc
545fc5b
 
 
 
d1a05cc
545fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a05cc
 
 
545fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a05cc
 
 
545fc5b
 
 
 
 
d1a05cc
 
 
545fc5b
 
 
 
d1a05cc
 
545fc5b
d1a05cc
 
 
 
545fc5b
d1a05cc
 
 
 
545fc5b
d1a05cc
 
545fc5b
 
 
 
 
 
 
 
 
 
 
 
d1a05cc
 
 
545fc5b
d1a05cc
545fc5b
 
d1a05cc
545fc5b
d1a05cc
 
545fc5b
 
 
 
 
adead6c
545fc5b
 
 
 
adead6c
 
 
545fc5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from fastapi import FastAPI, UploadFile, Form, HTTPException, Depends, status, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
import pandas as pd
import numpy as np
from sklearn.naive_bayes import CategoricalNB
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import json
import io
from typing import Dict, List, Optional, Any
from pydantic import BaseModel, Field
import matplotlib.pyplot as plt
import seaborn as sns
from fastapi.encoders import jsonable_encoder

app = FastAPI(
    title="Categorical Naive Bayes API",
    description="API for uploading CSVs, training a Categorical Naive Bayes model, and making predictions.",
    version="1.0.0"
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class TrainOptions(BaseModel):
    target_column: str = Field(..., description="The name of the target column.")
    feature_columns: List[str] = Field(..., description="List of feature column names.")

class PredictionFeatures(BaseModel):
    features: Dict[str, str] = Field(..., description="Dictionary of feature values for prediction.")

class UploadResponse(BaseModel):
    message: str
    columns: List[str]
    column_types: Dict[str, str]
    unique_values: Dict[str, List[Any]]
    row_count: int

class TrainResponse(BaseModel):
    message: str
    accuracy: float
    target_classes: List[str]

class PredictResponse(BaseModel):
    prediction: str
    probabilities: Dict[str, float]

class ModelState:
    def __init__(self):
        self.model: Optional[CategoricalNB] = None
        self.feature_encoders: Dict[str, LabelEncoder] = {}
        self.target_encoder: Optional[LabelEncoder] = None
        self.X_test: Optional[pd.DataFrame] = None
        self.y_test: Optional[np.ndarray] = None

model_state = ModelState()

def get_model_state():
    return model_state

@app.get("/api/health", tags=["Health"], summary="Health Check", response_model=Dict[str, str])
async def health_check():
    """Check API health."""
    return {"status": "healthy"}

@app.post("/api/upload", tags=["Data"], summary="Upload CSV File", response_model=UploadResponse, status_code=status.HTTP_200_OK)
async def upload_csv(
    file: UploadFile = File(..., description="CSV file to upload")
) -> UploadResponse:
    """Upload a CSV file and get metadata about its columns."""
    if not file.filename or not file.filename.lower().endswith('.csv'):
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST, 
            detail="Only CSV files are allowed"
        )
    
    try:
        contents = await file.read()
        # Check if the file content is valid
        if len(contents) == 0:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail="Uploaded file is empty"
            )
        
        # Try to parse the CSV
        try:
            df = pd.read_csv(io.StringIO(contents.decode('utf-8')))
        except UnicodeDecodeError:
            # Try another encoding if UTF-8 fails
            try:
                df = pd.read_csv(io.StringIO(contents.decode('latin-1')))
            except Exception:
                raise HTTPException(
                    status_code=status.HTTP_400_BAD_REQUEST,
                    detail="Unable to decode CSV file. Please ensure it's properly formatted."
                )
        except Exception as e:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=f"Error parsing CSV: {str(e)}"
            )
        
        if df.empty:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail="CSV file contains no data"
            )
        
        # Process the data
        columns = df.columns.tolist()
        column_types = {col: str(df[col].dtype) for col in columns}
        
        # Limit the number of unique values to prevent excessive response sizes
        unique_values = {}
        for col in columns:
            unique_vals = df[col].unique().tolist()
            # Limit to 100 values max to prevent excessive response size
            if len(unique_vals) > 100:
                unique_values[col] = unique_vals[:100] + ["... (truncated)"]
            else:
                unique_values[col] = unique_vals
                
        # Convert NumPy objects to Python native types
        for col, values in unique_values.items():
            unique_values[col] = [v.item() if isinstance(v, np.generic) else v for v in values]
            
        return UploadResponse(
            message="File uploaded and processed successfully",
            columns=columns,
            column_types=column_types,
            unique_values=unique_values,
            row_count=len(df)
        )
    except HTTPException:
        # Re-raise HTTP exceptions
        raise
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, 
            detail=f"An unexpected error occurred: {str(e)}"
        )

@app.post("/api/train", tags=["Model"], summary="Train Model", response_model=TrainResponse, status_code=status.HTTP_200_OK)
async def train_model(
    file: UploadFile = File(..., description="CSV file to train on"),
    options: TrainOptions = Depends(),
    state: ModelState = Depends(get_model_state)
) -> TrainResponse:
    """Train a Categorical Naive Bayes model on the uploaded CSV.
    
    Parameters:
    - file: CSV file with the training data
    - options: Training options specifying target column and feature columns
    """
    try:
        contents = await file.read()
        
        try:
            df = pd.read_csv(io.StringIO(contents.decode('utf-8')))
        except UnicodeDecodeError:
            df = pd.read_csv(io.StringIO(contents.decode('latin-1')))
            
        # Validate columns exist in the DataFrame
        missing_columns = [col for col in [options.target_column] + options.feature_columns 
                          if col not in df.columns]
        if missing_columns:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=f"Columns not found in CSV: {', '.join(missing_columns)}"
            )
        
        # Initialize data structures
        X = pd.DataFrame()
        state.feature_encoders = {}
        
        # Encode features
        for column in options.feature_columns:
            if df[column].isna().any():
                raise HTTPException(
                    status_code=status.HTTP_400_BAD_REQUEST,
                    detail=f"Column '{column}' contains missing values. Please preprocess your data."
                )
            encoder = LabelEncoder()
            X[column] = encoder.fit_transform(df[column])
            state.feature_encoders[column] = encoder
            
        # Encode target
        if df[options.target_column].isna().any():
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=f"Target column '{options.target_column}' contains missing values."
            )
            
        state.target_encoder = LabelEncoder()
        y = state.target_encoder.fit_transform(df[options.target_column])
        
        # Train/test split
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42, stratify=y if len(np.unique(y)) > 1 else None
        )
        
        # Train the model
        state.model = CategoricalNB()
        state.model.fit(X_train, y_train)
        accuracy = float(state.model.score(X_test, y_test))
        state.X_test = X_test
        state.y_test = y_test
        
        return TrainResponse(
            message="Model trained successfully",
            accuracy=accuracy,
            target_classes=list(state.target_encoder.classes_)
        )
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail=f"Model training failed: {str(e)}"
        )

@app.post("/api/predict", tags=["Model"], summary="Predict", response_model=PredictResponse, status_code=status.HTTP_200_OK)
async def predict(
    features: PredictionFeatures,
    state: ModelState = Depends(get_model_state)
) -> PredictResponse:
    """Predict the target class for given features using the trained model.
    
    Parameters:
    - features: Dictionary of feature values for prediction
    """
    if state.model is None:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST, 
            detail="Model not trained yet. Please train a model before making predictions."
        )
    
    try:
        # Validate that all required features are provided
        required_features = set(state.feature_encoders.keys())
        provided_features = set(features.features.keys())
        
        missing_features = required_features - provided_features
        if missing_features:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=f"Missing required features: {', '.join(missing_features)}"
            )
            
        # Validate extra features
        extra_features = provided_features - required_features
        if extra_features:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=f"Unexpected features provided: {', '.join(extra_features)}"
            )
        
        # Encode features
        encoded_features = {}
        for column, value in features.features.items():
            try:
                encoded_features[column] = state.feature_encoders[column].transform([value])[0]
            except ValueError:
                # Handle unknown category values
                raise HTTPException(
                    status_code=status.HTTP_400_BAD_REQUEST,
                    detail=f"Unknown value '{value}' for feature '{column}'. Allowed values: {', '.join(map(str, state.feature_encoders[column].classes_))}"
                )
                
        # Make prediction
        X = pd.DataFrame([encoded_features])
        prediction = state.model.predict(X)
        prediction_proba = state.model.predict_proba(X)
        predicted_class = state.target_encoder.inverse_transform(prediction)[0]
        
        # Generate probabilities
        class_probabilities = {
            state.target_encoder.inverse_transform([i])[0]: float(prob)
            for i, prob in enumerate(prediction_proba[0])
        }
        
        return PredictResponse(
            prediction=predicted_class,
            probabilities=class_probabilities
        )
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, 
            detail=f"Prediction failed: {str(e)}"
        )

@app.get(
    "/api/plot/confusion-matrix", 
    tags=["Model"], 
    summary="Confusion Matrix Plot",
    response_class=StreamingResponse,
    responses={
        200: {
            "content": {"image/png": {}},
            "description": "PNG image of confusion matrix"
        },
        400: {
            "description": "Model not trained or no test data available"
        }
    }
)
async def plot_confusion_matrix(state: ModelState = Depends(get_model_state)):
    """Return a PNG image of the confusion matrix for the last test set."""
    if state.model is None or state.X_test is None or state.y_test is None:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST, 
            detail="Model not trained or no test data available."
        )
    
    try:
        y_pred = state.model.predict(state.X_test)
        cm = confusion_matrix(state.y_test, y_pred)
        
        # Create plot
        fig, ax = plt.subplots(figsize=(7, 6))
        cax = ax.matshow(cm, cmap=plt.cm.Blues)
        plt.title('Confusion Matrix')
        plt.xlabel('Predicted')
        plt.ylabel('Actual')
        plt.colorbar(cax)
        
        # Add labels
        classes = state.target_encoder.classes_ if state.target_encoder else []
        ax.set_xticks(np.arange(len(classes)))
        ax.set_yticks(np.arange(len(classes)))
        ax.set_xticklabels(classes, rotation=45, ha="left")
        ax.set_yticklabels(classes)
        
        # Add numbers to the plot
        for (i, j), z in np.ndenumerate(cm):
            ax.text(j, i, str(z), ha='center', va='center', 
                   color='white' if cm[i, j] > cm.max() / 2 else 'black')
        
        plt.tight_layout()
        
        # Save to buffer
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=150)
        plt.close(fig)
        buf.seek(0)
        
        # Create response with cache control headers
        response = StreamingResponse(buf, media_type="image/png")
        response.headers["Cache-Control"] = "max-age=3600"  # Cache for 1 hour
        return response
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, 
            detail=f"Failed to generate confusion matrix: {str(e)}"
        )

@app.get(
    "/api/plot/feature-log-prob", 
    tags=["Model"], 
    summary="Feature Log Probability Heatmap",
    response_class=StreamingResponse,
    responses={
        200: {
            "content": {"image/png": {}},
            "description": "PNG heatmap of feature log probabilities"
        },
        400: {
            "description": "Model not trained"
        }
    }
)
async def plot_feature_log_prob(state: ModelState = Depends(get_model_state)):
    """Return a PNG heatmap of feature log probabilities for each class."""
    if state.model is None or state.target_encoder is None:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST, 
            detail="Model not trained."
        )
    
    try:
        feature_names = list(state.feature_encoders.keys())
        class_names = list(state.target_encoder.classes_)
        
        # Calculate plot size based on data
        fig_height = max(4, 2 * len(feature_names))
        fig, axes = plt.subplots(len(feature_names), 1, figsize=(10, fig_height))
        if len(feature_names) == 1:
            axes = [axes]
            
        for idx, feature in enumerate(feature_names):
            encoder = state.feature_encoders[feature]
            categories = encoder.classes_
            data = []
            
            for class_idx, class_name in enumerate(class_names):
                # For each class, get the log prob for each value of this feature
                log_probs = state.model.feature_log_prob_[class_idx, idx, :]
                data.append(log_probs)
                
            data = np.array(data)
            ax = axes[idx]
            
            # Create heatmap
            sns.heatmap(
                data, 
                annot=True, 
                fmt=".2f", 
                cmap="Blues", 
                xticklabels=categories, 
                yticklabels=class_names, 
                ax=ax
            )
            
            ax.set_title(f'Log Probabilities for Feature: {feature}')
            ax.set_xlabel('Feature Value')
            ax.set_ylabel('Class')
            
        plt.tight_layout()
        
        # Save to buffer
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=150)
        plt.close(fig)
        buf.seek(0)
        
        # Create response with cache control headers
        response = StreamingResponse(buf, media_type="image/png")
        response.headers["Cache-Control"] = "max-age=3600"  # Cache for 1 hour
        return response
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, 
            detail=f"Failed to generate feature log probability plot: {str(e)}"
        )

if __name__ == "__main__":
    import uvicorn
    import os
    
    # Get port from environment variable or default to 7860 (for HF Spaces)
    port = int(os.environ.get("PORT", 7860))
    
    # Configure logging for better visibility
    log_config = uvicorn.config.LOGGING_CONFIG
    log_config["formatters"]["access"]["fmt"] = "%(asctime)s - %(levelname)s - %(message)s"
    log_config["formatters"]["default"]["fmt"] = "%(asctime)s - %(levelname)s - %(message)s"
    
    uvicorn.run(
        "app:app", 
        host="0.0.0.0", 
        port=port, 
        log_level="info",
        reload=True,
        log_config=log_config
    )