best / app.py
yakine's picture
Update app.py
dbb92e9 verified
raw
history blame
5.42 kB
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
from tqdm import tqdm
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can specify domains here
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
def preprocess_user_prompt(user_prompt):
# Generate a structured prompt based on the user input
generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
return generated_text
# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """
class DataGenerationRequest(BaseModel):
description: str
columns: list
# Set up the Mixtral model and tokenizer
token = hf_token # Use environment variable for the token
HfFolder.save_token(token)
tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token)
def format_prompt(description, columns):
processed_description = preprocess_user_prompt(description)
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
return prompt
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
generation_params = {
"top_p": 0.90,
"temperature": 0.8,
"max_new_tokens": 512,
"return_full_text": False,
"use_cache": False
}
def generate_synthetic_data(description, columns):
formatted_prompt = format_prompt(description, columns)
payload = {"inputs": formatted_prompt, "parameters": generation_params}
response = requests.post(API_URL, headers={"Authorization": f"Bearer {token}"}, json=payload)
response_data = response.json()
if 'error' in response_data:
return f"Error: {response_data['error']}"
return response_data[0]["generated_text"]
def process_generated_data(csv_data, expected_columns):
try:
# Ensure the data is cleaned and correctly formatted
cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
data = StringIO(cleaned_data)
# Read the CSV data
df = pd.read_csv(data, delimiter=',')
# Check if the DataFrame has the expected columns
if set(df.columns) != set(expected_columns):
return f"Unexpected columns in the generated data: {df.columns}"
return df
except pd.errors.ParserError as e:
return f"Failed to parse CSV data: {e}"
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
csv_data_all = ""
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
generated_data = generate_synthetic_data(description, columns)
if "Error" in generated_data:
return generated_data # Return the error message
df_synthetic = process_generated_data(generated_data, columns)
if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty:
csv_data_all += df_synthetic.to_csv(index=False, header=False)
else:
print("Skipping invalid generation.")
if csv_data_all:
return csv_data_all
else:
return "No valid data frames to concatenate."
@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
description = request.description.strip()
columns = [col.strip() for col in request.columns]
generated_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100)
if isinstance(generated_data, str) and "Error" in generated_data:
return JSONResponse(content={"error": generated_data}, status_code=500)
# Create a streaming response to return the CSV data
csv_buffer = StringIO(generated_data)
return StreamingResponse(
csv_buffer,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
)
@app.get("/")
def greet_json():
return {"Hello": "World!"}