|
--- |
|
title: OOTDiffusion Try-On |
|
emoji: π |
|
colorFrom: purple |
|
colorTo: pink |
|
sdk: gradio |
|
sdk_version: 4.16.0 |
|
app_file: ./run/gradio_ootd.py |
|
pinned: false |
|
--- |
|
|
|
# OOTDiffusion |
|
This repository is the official implementation of OOTDiffusion |
|
|
|
π€ [Try out OOTDiffusion](https://huggingface.co/spaces/levihsu/OOTDiffusion) |
|
|
|
(Thanks to [ZeroGPU](https://huggingface.co/zero-gpu-explorers) for providing A100 GPUs) |
|
|
|
<!-- Or [try our own demo](https://ootd.ibot.cn/) on RTX 4090 GPUs --> |
|
|
|
> **OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on** [[arXiv paper](https://arxiv.org/abs/2403.01779)]<br> |
|
> [Yuhao Xu](http://levihsu.github.io/), [Tao Gu](https://github.com/T-Gu), [Weifeng Chen](https://github.com/ShineChen1024), [Chengcai Chen](https://www.researchgate.net/profile/Chengcai-Chen)<br> |
|
> Xiao-i Research |
|
|
|
|
|
Our model checkpoints trained on [VITON-HD](https://github.com/shadow2496/VITON-HD) (half-body) and [Dress Code](https://github.com/aimagelab/dress-code) (full-body) have been released |
|
|
|
* π€ [Hugging Face link](https://huggingface.co/levihsu/OOTDiffusion) for ***checkpoints*** (ootd, humanparsing, and openpose) |
|
* π’π’ We support ONNX for [humanparsing](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing) now. Most environmental issues should have been addressed : ) |
|
* Please also download [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) into ***checkpoints*** folder |
|
* We've only tested our code and models on Linux (Ubuntu 22.04) |
|
|
|
 |
|
 |
|
|
|
## Installation |
|
1. Clone the repository |
|
|
|
```sh |
|
git clone https://github.com/levihsu/OOTDiffusion |
|
``` |
|
|
|
2. Create a conda environment and install the required packages |
|
|
|
```sh |
|
conda create -n ootd python==3.10 |
|
conda activate ootd |
|
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Inference |
|
1. Half-body model |
|
|
|
```sh |
|
cd OOTDiffusion/run |
|
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --scale 2.0 --sample 4 |
|
``` |
|
|
|
2. Full-body model |
|
|
|
> Garment category must be paired: 0 = upperbody; 1 = lowerbody; 2 = dress |
|
|
|
```sh |
|
cd OOTDiffusion/run |
|
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --model_type dc --category 2 --scale 2.0 --sample 4 |
|
``` |
|
|
|
## Citation |
|
``` |
|
@article{xu2024ootdiffusion, |
|
title={OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on}, |
|
author={Xu, Yuhao and Gu, Tao and Chen, Weifeng and Chen, Chengcai}, |
|
journal={arXiv preprint arXiv:2403.01779}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Star History |
|
|
|
[](https://star-history.com/#levihsu/OOTDiffusion&Date) |
|
|
|
## TODO List |
|
- [x] Paper |
|
- [x] Gradio demo |
|
- [x] Inference code |
|
- [x] Model weights |
|
- [ ] Training code |
|
|