a96123155 commited on
Commit
ad079a8
·
1 Parent(s): 4cbc75d
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +547 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ # Import necessary libraries
5
+ import argparse
6
+ import matplotlib
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import os
10
+ import pandas as pd
11
+ import pathlib
12
+ import random
13
+ import scanpy as sc
14
+ import seaborn as sns
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+ from argparse import Namespace
19
+ from collections import Counter, OrderedDict
20
+ from copy import deepcopy
21
+ from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
22
+ from esm.data import *
23
+ from esm.model.esm2 import ESM2
24
+ from sklearn import preprocessing
25
+ from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
26
+ precision_recall_fscore_support,
27
+ precision_recall_curve, classification_report,
28
+ roc_auc_score, average_precision_score,
29
+ precision_score, recall_score, f1_score,
30
+ accuracy_score)
31
+ from sklearn.model_selection import StratifiedKFold
32
+ from sklearn.utils import class_weight
33
+ from scipy.stats import spearmanr, pearsonr
34
+ from torch import nn
35
+ from torch.nn import Linear
36
+ from torch.nn.utils.rnn import pad_sequence
37
+ from torch.utils.data import Dataset, DataLoader
38
+ from torch.optim import lr_scheduler
39
+ from tqdm import tqdm, trange
40
+
41
+ # Set global variables
42
+ matplotlib.rcParams.update({'font.size': 7})
43
+ seed = 19961231
44
+ random.seed(seed)
45
+ np.random.seed(seed)
46
+ torch.manual_seed(seed)
47
+ torch.cuda.manual_seed(seed)
48
+ torch.backends.cudnn.deterministic = True
49
+ torch.backends.cudnn.benchmark = False
50
+
51
+
52
+ global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, device, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
53
+
54
+ epochs = 5
55
+ layers = 6
56
+ heads = 16
57
+ embed_dim = 128
58
+ batch_toks = 4096
59
+ fc_node = 64
60
+ dropout_prob = 0.5
61
+ folds = 10
62
+ repr_layers = [-1]
63
+ include = ["mean"]
64
+ truncate = True
65
+ finetune = False
66
+ return_contacts = False
67
+ return_representation = False
68
+
69
+ device = "cpu"
70
+
71
+ global tok_to_idx, idx_to_tok, mask_toks_id
72
+ alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
73
+ assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
74
+
75
+ # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
76
+ tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
77
+ idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
78
+ print(tok_to_idx)
79
+ mask_toks_id = 8
80
+
81
+ global w1, w2, w3
82
+ w1, w2, w3 = 1, 1, 100
83
+
84
+ class CNN_linear(nn.Module):
85
+ def __init__(self):
86
+ super(CNN_linear, self).__init__()
87
+
88
+ self.esm2 = ESM2(num_layers = layers,
89
+ embed_dim = embed_dim,
90
+ attention_heads = heads,
91
+ alphabet = alphabet)
92
+
93
+ self.dropout = nn.Dropout(dropout_prob)
94
+ self.relu = nn.ReLU()
95
+ self.flatten = nn.Flatten()
96
+ self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
97
+ self.output = nn.Linear(in_features = fc_node, out_features = 2)
98
+
99
+ def predict(self, tokens):
100
+
101
+ x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
102
+ x_cls = x["representations"][layers][:, 0]
103
+
104
+ o = self.fc(x_cls)
105
+ o = self.relu(o)
106
+ o = self.dropout(o)
107
+ o = self.output(o)
108
+
109
+ y_prob = torch.softmax(o, dim = 1)
110
+ y_pred = torch.argmax(y_prob, dim = 1)
111
+
112
+ if transform_type:
113
+ y_prob_transformed = prob_transform(y_prob[:,1])
114
+ return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
115
+ else:
116
+ return y_prob[:,1], y_pred, x['logits'], o[:,1]
117
+
118
+ def forward(self, x1, x2):
119
+ logit_1, repr_1 = self.predict(x1)
120
+ logit_2, repr_2 = self.predict(x2)
121
+ return (logit_1, logit_2), (repr_1, repr_2)
122
+
123
+ def prob_transform(prob, **kwargs): # Logits
124
+ """
125
+ Transforms probability values based on the specified method.
126
+
127
+ :param prob: torch.Tensor, the input probabilities to be transformed
128
+ :param transform_type: str, the type of transformation to be applied
129
+ :param kwargs: additional parameters for transformations
130
+ :return: torch.Tensor, transformed probabilities
131
+ """
132
+
133
+ if transform_type == 'sigmoid':
134
+ x0 = kwget('x0', 0.5)
135
+ k = kwget('k', 10.0)
136
+ prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
137
+
138
+ elif transform_type == 'logit':
139
+ # Adding a small value to avoid log(0) and log(1)
140
+ prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
141
+
142
+ elif transform_type == 'power_law':
143
+ gamma = kwget('gamma', 2.0)
144
+ prob_transformed = torch.pow(prob, gamma)
145
+
146
+ elif transform_type == 'tanh':
147
+ k = kwget('k', 2.0)
148
+ prob_transformed = torch.tanh(k * prob)
149
+
150
+ return prob_transformed
151
+
152
+ def random_replace(sequence, continuous_replace=False):
153
+ if end_nt_position == -1: end_nt_position = len(sequence)
154
+ if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
155
+ # raise ValueError("Invalid start/end positions")
156
+ print("Invalid start/end positions")
157
+ start_nt_position, end_nt_position = 0, -1
158
+
159
+ # 将序列切片成三部分:替换区域前、替换区域、替换区域后
160
+ pre_segment = sequence[:start_nt_position]
161
+ target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
162
+ post_segment = sequence[end_nt_position + 1:]
163
+
164
+ if not continuous_replace:
165
+ # 随机替换目标片段的mlm_tok_num个位置
166
+ indices = random.sample(range(len(target_segment)), mlm_tok_num)
167
+ for idx in indices:
168
+ target_segment[idx] = '*'
169
+ else:
170
+ # 在目标片段连续替换mlm_tok_num个位置
171
+ max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
172
+ if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
173
+ return target_segment
174
+ start_idx = random.randint(0, max_start_idx)
175
+ for idx in range(start_idx, start_idx + mlm_tok_num):
176
+ target_segment[idx] = '*'
177
+
178
+ # 合并并返回最终的序列
179
+ return ''.join([pre_segment] + target_segment + [post_segment])
180
+
181
+
182
+ def mlm_seq(seq):
183
+ seq_token, masked_sequence_token = [7],[7]
184
+ seq_token += [tok_to_idx[token] for token in seq]
185
+
186
+ masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
187
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
188
+
189
+ return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
190
+
191
+ def batch_mlm_seq(seq_list, continuous_replace = False):
192
+ batch_seq = []
193
+ batch_masked_seq = []
194
+ batch_seq_token_list = []
195
+ batch_masked_seq_token_list = []
196
+
197
+ for i, seq in enumerate(seq_list):
198
+ seq_token, masked_seq_token = [7], [7]
199
+ seq_token += [tok_to_idx[token] for token in seq]
200
+
201
+ masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
202
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
203
+
204
+ batch_seq.append(seq)
205
+ batch_masked_seq.append(masked_seq)
206
+
207
+ batch_seq_token_list.append(seq_token)
208
+ batch_masked_seq_token_list.append(masked_seq_token)
209
+
210
+ return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
211
+
212
+ def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
213
+ # Only remain the AGCT logits
214
+ esm_logits = esm_logits[:,:,3:7]
215
+ # Get the predicted tokens using argmax
216
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
217
+
218
+ batch_size, seq_len, vocab_size = esm_logits.size()
219
+ if exclude_low_prob: min_prob = 1 / vocab_size
220
+ # Initialize an empty list to store the recovered sequences
221
+ recovered_sequences, recovered_toks = [], []
222
+
223
+ for i in range(batch_size):
224
+ recovered_sequence_i, recovered_tok_i = [], []
225
+ for j in range(seq_len):
226
+ if masked_toks[i][j] == 8:
227
+ print(i,j)
228
+ ### Sample M recovery sequences using the logits
229
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
230
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
231
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
232
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
233
+
234
+ ### 有放回抽样
235
+ max_retries = 5
236
+ retries = 0
237
+ success = False
238
+
239
+ while retries < max_retries and not success:
240
+ try:
241
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
242
+ success = True # 设置成功标志
243
+ except ValueError as e:
244
+ retries += 1
245
+ print(f"Attempt {retries} failed with error: {e}")
246
+ if retries >= max_retries:
247
+ print("Max retries reached. Skipping this iteration.")
248
+
249
+ ### recovery to sequence
250
+ if retries < max_retries:
251
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
252
+ recovery_seq = deepcopy(list(masked_seqs[i]))
253
+ recovery_tok = deepcopy(masked_toks[i])
254
+
255
+ recovery_tok[j] = idx
256
+ recovery_seq[j-1] = idx_to_tok[idx]
257
+
258
+ recovered_tok_i.append(recovery_tok)
259
+ recovered_sequence_i.append(''.join(recovery_seq))
260
+
261
+ recovered_sequences.extend(recovered_sequence_i)
262
+ recovered_toks.extend(recovered_tok_i)
263
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
264
+
265
+ def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
266
+ # Only remain the AGCT logits
267
+ esm_logits = esm_logits[:,:,3:7]
268
+ # Get the predicted tokens using argmax
269
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
270
+
271
+ batch_size, seq_len, vocab_size = esm_logits.size()
272
+ if exclude_low_prob: min_prob = 1 / vocab_size
273
+ # Initialize an empty list to store the recovered sequences
274
+ recovered_sequences, recovered_toks = [], []
275
+
276
+ for i in range(batch_size):
277
+ recovered_sequence_i, recovered_tok_i = [], []
278
+ recovered_masked_num = 0
279
+ for j in range(seq_len):
280
+ if masked_toks[i][j] == 8:
281
+ ### Sample M recovery sequences using the logits
282
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
283
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
284
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
285
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
286
+
287
+ ### 有放回抽样
288
+ max_retries = 5
289
+ retries = 0
290
+ success = False
291
+
292
+ while retries < max_retries and not success:
293
+ try:
294
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
295
+ success = True # 设置成功标志
296
+ except ValueError as e:
297
+ retries += 1
298
+ print(f"Attempt {retries} failed with error: {e}")
299
+ if retries >= max_retries:
300
+ print("Max retries reached. Skipping this iteration.")
301
+
302
+ ### recovery to sequence
303
+
304
+ if recovered_masked_num == 0:
305
+ if retries < max_retries:
306
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
307
+ recovery_seq = deepcopy(list(masked_seqs[i]))
308
+ recovery_tok = deepcopy(masked_toks[i])
309
+
310
+ recovery_tok[j] = idx
311
+ recovery_seq[j-1] = idx_to_tok[idx]
312
+
313
+ recovered_tok_i.append(recovery_tok)
314
+ recovered_sequence_i.append(''.join(recovery_seq))
315
+
316
+ elif recovered_masked_num > 0:
317
+ if retries < max_retries:
318
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
319
+ for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
320
+
321
+ recovery_seq_temp = list(recovery_seq)
322
+ recovery_tok[j] = idx
323
+ recovery_seq_temp[j-1] = idx_to_tok[idx]
324
+
325
+ recovered_tok_i.append(recovery_tok)
326
+ recovered_sequence_i.append(''.join(recovery_seq_temp))
327
+
328
+ recovered_masked_num += 1
329
+ recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
330
+ recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
331
+ recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
332
+
333
+ recovered_sequences.extend(recovered_sequence_i)
334
+ recovered_toks.extend(recovered_tok_i)
335
+
336
+ recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
337
+
338
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
339
+
340
+ def mismatched_positions(s1, s2):
341
+ # 这个函数假定两个字符串的长度相同。
342
+ """Return the number of positions where two strings differ."""
343
+
344
+ # The number of mismatches will be the sum of positions where characters are not the same
345
+ return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
346
+
347
+ def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
348
+ seen = {}
349
+ unique_seqs = []
350
+ unique_probs = []
351
+ unique_logits = []
352
+
353
+ for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
354
+ if seq not in seen:
355
+ unique_seqs.append(seq)
356
+ unique_probs.append(prob)
357
+ unique_logits.append(logit)
358
+ seen[seq] = True
359
+
360
+ return unique_seqs, unique_probs, unique_logits
361
+
362
+ def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
363
+ seen = {}
364
+ unique_seqs = []
365
+ unique_probs = []
366
+
367
+ for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
368
+ if seq not in seen:
369
+ unique_seqs.append(seq)
370
+ unique_probs.append(prob)
371
+ seen[seq] = True
372
+
373
+ return unique_seqs, unique_probs
374
+
375
+ def mutated_seq(wt_seq, wt_label):
376
+ wt_seq = '!'+ wt_seq
377
+ wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
378
+ wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
379
+
380
+ print(f'Wild Type: Length = ', len(wt_seq), '\n', wt_seq)
381
+ print(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
382
+
383
+ # print(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
384
+ pbar = tqdm(total=n_mut)
385
+ mutated_seqs = []
386
+ i = 1
387
+ while i <= n_mut:
388
+ if i == 1: seeds_ep = [wt_seq[1:]]
389
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
390
+ for seed in seeds_ep:
391
+ seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
392
+
393
+ seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
394
+ _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
395
+ mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
396
+ mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
397
+
398
+ ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
399
+ filtered_mut_seqs = []
400
+ filtered_mut_probs = []
401
+ filtered_mut_logits = []
402
+ if mut_by_prob:
403
+ for z in range(len(mut_seqs)):
404
+ if mutate2stronger:
405
+ if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
406
+ filtered_mut_seqs.append(mut_seqs[z])
407
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
408
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
409
+ else:
410
+ if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
411
+ filtered_mut_seqs.append(mut_seqs[z])
412
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
413
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
414
+ else:
415
+ for z in range(len(mut_seqs)):
416
+ if mutate2stronger:
417
+ if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
418
+ filtered_mut_seqs.append(mut_seqs[z])
419
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
420
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
421
+ else:
422
+ if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
423
+ filtered_mut_seqs.append(mut_seqs[z])
424
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
425
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
426
+
427
+
428
+
429
+ ### Save
430
+ seeds_next_ep.extend(filtered_mut_seqs)
431
+ seeds_probs_next_ep.extend(filtered_mut_probs)
432
+ seeds_logits_next_ep.extend(filtered_mut_logits)
433
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
434
+
435
+ ### Sampling based on prob
436
+ if len(seeds_next_ep) > n_sampling_designs_ep:
437
+ seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
438
+ seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
439
+
440
+ seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
441
+ seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
442
+ seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
443
+ seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
444
+
445
+ mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
446
+
447
+ seeds_ep = seeds_next_ep
448
+ i += 1
449
+ pbar.update(1)
450
+ pbar.close()
451
+
452
+ mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
453
+ mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
454
+ mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
455
+ return mutated_seqs
456
+
457
+ def read_raw(raw_input):
458
+ ids = []
459
+ sequences = []
460
+
461
+ file = StringIO(raw_input)
462
+ for record in SeqIO.parse(file, "fasta"):
463
+
464
+ # 检查序列是否只包含A, G, C, T
465
+ sequence = str(record.seq.back_transcribe()).upper()[-inp_len:]
466
+ if not set(sequence).issubset(set("AGCT")):
467
+ st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
468
+ continue
469
+
470
+ # 将符合条件的序列添加到列表中
471
+ ids.append(record.id)
472
+ sequences.append(sequence)
473
+
474
+ return ids, sequences
475
+
476
+ def predict_raw(raw_input):
477
+ state_dict = torch.load('v2.7_LeidenContrastive_best_model_fold0.pt', map_location=torch.device(device))
478
+ new_state_dict = OrderedDict()
479
+
480
+ for k, v in state_dict.items():
481
+ name = k.replace('module.','')
482
+ new_state_dict[name] = v
483
+
484
+ model = CNN_linear().to(device)
485
+ model.load_state_dict(new_state_dict, strict = False)
486
+ model.eval()
487
+
488
+ # st.write('====Parse Input====')
489
+ ids, seqs = read_raw(raw_input)
490
+
491
+ # st.write('====Predict====')
492
+ res_pd = pd.DataFrame()
493
+ for wt_seq, wt_id in zip(seqs, ids):
494
+ try:
495
+ res = mutated_seq(wt_seq, wt_id)
496
+ res_pd.append(res)
497
+ except:
498
+ st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
499
+ # print(pred)
500
+ return res_pd
501
+
502
+
503
+ st.title("IRES-LM prediction and mutation")
504
+
505
+ # Input sequence
506
+ st.subheader("Input sequence")
507
+
508
+ seq = st.text_area("FASTA format only", value="")
509
+ st.subheader("Upload sequence file")
510
+ uploaded = st.file_uploader("Sequence file in FASTA format")
511
+
512
+ # augments
513
+ global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
514
+ output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
515
+ start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
516
+ end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
517
+ mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
518
+ transform_type = st.selectbox("Type of probability transformation",
519
+ ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
520
+ index=2)
521
+ mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
522
+ n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
523
+ n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
524
+ n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
525
+ n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
526
+ mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
527
+
528
+ if not mut_by_prob and transform_type != '':
529
+ print("--transform_type must be '' when --mut_by_prob is False")
530
+ transform_type = ''
531
+
532
+ # Run
533
+ if st.button("Predict and Mutate"):
534
+ if uploaded:
535
+ result = predict_raw(uploaded.getvalue().decode())
536
+ else:
537
+ result = predict_raw(seq)
538
+
539
+ result_file = result.to_csv(index=False)
540
+ st.download_button("Download", result_file, file_name=output_filename+".csv")
541
+ st.dataframe(result)
542
+
543
+
544
+
545
+
546
+
547
+