Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load MedScholar model and tokenizer | |
model_name = "yasserrmd/MedScholar-1.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
trust_remote_code=True | |
) | |
model.eval() | |
# Chat function (streaming style) | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
# Prepare the full conversation | |
conversation = [{"role": "system", "content": system_message}] | |
for user_msg, bot_reply in history: | |
if user_msg: | |
conversation.append({"role": "user", "content": user_msg}) | |
if bot_reply: | |
conversation.append({"role": "assistant", "content": bot_reply}) | |
conversation.append({"role": "user", "content": message}) | |
# Convert conversation into prompt string | |
prompt = "" | |
for turn in conversation: | |
if turn["role"] == "system": | |
prompt += f"<|system|>\n{turn['content']}\n" | |
elif turn["role"] == "user": | |
prompt += f"<|user|>\n{turn['content']}\n" | |
elif turn["role"] == "assistant": | |
prompt += f"<|assistant|>\n{turn['content']}\n" | |
prompt += "<|assistant|>\n" | |
# Tokenize | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate with streaming-like loop | |
output_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
# Decode and stream the new content | |
decoded = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
response = decoded.split("<|assistant|>\n")[-1].strip() | |
yield response | |
# Build Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful medical assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
title="🩺 MedScholar-1.5B: Medical Chatbot" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |