File size: 6,698 Bytes
a605c36
 
 
dbfa07b
a605c36
dbfa07b
a605c36
 
 
 
 
 
 
 
dbfa07b
 
 
 
 
 
 
 
 
 
 
 
 
 
a605c36
dbfa07b
 
a605c36
dbfa07b
 
 
 
 
 
 
 
 
 
 
 
 
 
a605c36
dbfa07b
 
a605c36
dbfa07b
 
 
 
 
 
a605c36
dbfa07b
 
 
a605c36
dbfa07b
 
 
 
 
 
 
 
 
 
a605c36
dbfa07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a605c36
 
dbfa07b
 
 
 
 
 
 
a605c36
dbfa07b
 
 
a605c36
dbfa07b
 
 
 
 
a605c36
 
 
 
dbfa07b
 
a605c36
 
dbfa07b
 
a605c36
 
dbfa07b
a605c36
 
 
dbfa07b
a605c36
dbfa07b
 
 
 
 
 
 
 
a605c36
 
dbfa07b
a605c36
 
 
dbfa07b
 
 
 
 
a605c36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageDraw
import numpy as np

# Chargement des modèles
def load_models():
    return {
        "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
        "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
        "RöntgenMeister": pipeline("image-classification", 
            model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
    }

def translate_label(label):
    translations = {
        "fracture": "Knochenbruch",
        "no fracture": "Kein Knochenbruch",
        "normal": "Normal",
        "abnormal": "Auffällig",
        "F1": "Knochenbruch",
        "NF": "Kein Knochenbruch"
    }
    return translations.get(label.lower(), label)

def create_heatmap_overlay(image, box, score):
    overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
    draw = ImageDraw.Draw(overlay)
    
    x1, y1 = box['xmin'], box['ymin']
    x2, y2 = box['xmax'], box['ymax']
    
    if score > 0.8:
        fill_color = (255, 0, 0, 100)
        border_color = (255, 0, 0, 255)
    elif score > 0.6:
        fill_color = (255, 165, 0, 100)
        border_color = (255, 165, 0, 255)
    else:
        fill_color = (255, 255, 0, 100)
        border_color = (255, 255, 0, 255)
    
    draw.rectangle([x1, y1, x2, y2], fill=fill_color)
    draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
    
    return overlay

def draw_boxes(image, predictions):
    result_image = image.copy().convert('RGBA')
    
    for pred in predictions:
        box = pred['box']
        score = pred['score']
        
        overlay = create_heatmap_overlay(image, box, score)
        result_image = Image.alpha_composite(result_image, overlay)
        
        draw = ImageDraw.Draw(result_image)
        temp = 36.5 + (score * 2.5)
        label = f"{translate_label(pred['label'])} ({score:.1%}{temp:.1f}°C)"
        
        text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
        draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
        
        draw.text(
            (box['xmin'], box['ymin']-20),
            label,
            fill=(255, 255, 255, 255)
        )
    
    return result_image

# Modèles chargés globalement
models = load_models()

def analyze_image(image, conf_threshold=0.60):
    if image is None:
        return None, "Bitte laden Sie ein Bild hoch."
    
    # Convertir en PIL Image si nécessaire
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    # Analyses
    predictions_watcher = models["KnochenWächter"](image)
    predictions_master = models["RöntgenMeister"](image)
    predictions_locator = models["KnochenAuge"](image)
    
    has_fracture = False
    max_fracture_score = 0
    result_html = "<div style='background: #f8f9fa; padding: 20px; border-radius: 10px;'>"
    
    # KnochenWächter results
    result_html += "<h3>🛡️ KnochenWächter</h3>"
    for pred in predictions_watcher:
        confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
        if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
            has_fracture = True
            max_fracture_score = max(max_fracture_score, pred['score'])
        result_html += f"""
            <div style='background: white; padding: 10px; margin: 5px 0; border-radius: 5px; border: 1px solid #e9ecef;'>
                <span style='color: {confidence_color}; font-weight: 500;'>
                    {pred['score']:.1%}
                </span> - {translate_label(pred['label'])}
            </div>
        """
    
    # RöntgenMeister results
    result_html += "<h3>🎓 RöntgenMeister</h3>"
    for pred in predictions_master:
        confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
        result_html += f"""
            <div style='background: white; padding: 10px; margin: 5px 0; border-radius: 5px; border: 1px solid #e9ecef;'>
                <span style='color: {confidence_color}; font-weight: 500;'>
                    {pred['score']:.1%}
                </span> - {translate_label(pred['label'])}
            </div>
        """
    
    # Probabilité
    if max_fracture_score > 0:
        no_fracture_prob = 1 - max_fracture_score
        result_html += f"""
            <h3>📊 Wahrscheinlichkeit</h3>
            <div style='background: white; padding: 10px; margin: 5px 0; border-radius: 5px; border: 1px solid #e9ecef;'>
                Knochenbruch: <strong style='color: #0066cc'>{max_fracture_score:.1%}</strong><br>
                Kein Knochenbruch: <strong style='color: #ffa500'>{no_fracture_prob:.1%}</strong>
            </div>
        """
    
    result_html += "</div>"
    
    # Image processing
    predictions = models["KnochenAuge"](image)
    filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
    if filtered_preds:
        result_image = draw_boxes(image, filtered_preds)
        return result_image, result_html
    else:
        return image, result_html

# Interface Gradio
css = """
.gradio-container {
    font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;
    background-color: #f0f2f5;
}
.gr-button {
    background-color: #f8f9fa !important;
    border: 1px solid #e9ecef !important;
    color: #1a1a1a !important;
}
.gr-button:hover {
    background-color: #e9ecef !important;
    transform: translateY(-1px);
}
.output-html {
    background: white;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("### 📤 Fraktur Detektion")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="Röntgenbild hochladen")
            conf_threshold = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.60,
                step=0.05,
                label="Konfidenzschwelle"
            )
            analyze_button = gr.Button("Analysieren", variant="primary")
        
        with gr.Column(scale=1):
            output_image = gr.Image(type="pil", label="Analysiertes Bild")
            output_html = gr.HTML(label="Ergebnisse")
    
    analyze_button.click(
        fn=analyze_image,
        inputs=[input_image, conf_threshold],
        outputs=[output_image, output_html]
    )

# Lancement de l'interface
demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=False,
    favicon_path=None,
    show_api=False,
    show_error=False,
    debug=False
)