File size: 8,597 Bytes
a326b94
78d26e0
 
 
3bb1400
88fb5fa
04a7bfd
 
 
 
 
78d26e0
 
 
 
 
0000f4a
04a7bfd
78d26e0
 
 
 
 
6cc7ff9
04a7bfd
 
 
 
 
 
 
78d26e0
04a7bfd
005d8cf
78d26e0
005d8cf
88fb5fa
78d26e0
 
 
 
 
 
 
 
 
 
 
 
 
806ecee
78d26e0
 
 
 
 
 
 
3bb1400
04a7bfd
78d26e0
 
 
 
 
 
 
 
 
 
 
88fb5fa
04a7bfd
 
 
88fb5fa
04a7bfd
88fb5fa
78d26e0
88fb5fa
 
04a7bfd
6cc7ff9
88fb5fa
 
78d26e0
 
 
 
 
 
04a7bfd
 
0000f4a
78d26e0
 
 
 
 
 
 
 
 
 
 
04a7bfd
78d26e0
04a7bfd
 
78d26e0
 
 
 
 
04a7bfd
78d26e0
04a7bfd
 
 
 
 
78d26e0
 
 
 
 
 
 
 
 
 
04a7bfd
78d26e0
 
 
 
 
 
 
 
 
04a7bfd
 
 
 
78d26e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a7bfd
78d26e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a7bfd
78d26e0
 
 
 
 
 
 
 
04a7bfd
 
88fb5fa
78d26e0
 
88fb5fa
78d26e0
 
 
 
 
88fb5fa
78d26e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea5ee2
3bb1400
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import streamlit as st
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import JSONResponse
from transformers import pipeline
import torch
from PIL import Image, ImageDraw
import io
import base64
import numpy as np
import json
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# FastAPI app
app = FastAPI(
    title="Fracture Detection API",
    description="API for detecting fractures in X-ray images using multiple ML models",
    version="1.0.0"
)

# Enable CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
    expose_headers=["*"]
)

# Load models with caching
@st.cache_resource
def load_models():
    logger.info("Loading ML models...")
    try:
        return {
            "D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
            "Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
            "Nandodeomkar": pipeline(
                "image-classification",
                model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388"
            )
        }
    except Exception as e:
        logger.error(f"Error loading models: {str(e)}")
        raise

# Initialize models
try:
    models = load_models()
    logger.info("Models loaded successfully")
except Exception as e:
    logger.error(f"Failed to load models: {str(e)}")
    models = None

def draw_boxes(image, predictions, threshold=0.6):
    """
    Draw bounding boxes and labels on the image for detected fractures.
    
    Args:
        image (PIL.Image): Input image
        predictions (list): List of predictions from the model
        threshold (float): Confidence threshold for filtering predictions
    
    Returns:
        tuple: (annotated image, filtered predictions)
    """
    draw = ImageDraw.Draw(image)
    filtered_preds = [p for p in predictions if p['score'] >= threshold]
    
    for pred in filtered_preds:
        box = pred['box']
        label = f"{pred['label']} ({pred['score']:.2%})"
        
        # Draw bounding box
        draw.rectangle(
            [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
            outline="red",
            width=2
        )
        
        # Draw label
        draw.text(
            (box['xmin'], box['ymin'] - 10),
            label,
            fill="red"
        )
    
    return image, filtered_preds

def process_image(image, confidence_threshold):
    """
    Process an image through all models and return combined results.
    
    Args:
        image (PIL.Image): Input image
        confidence_threshold (float): Confidence threshold for filtering predictions
    
    Returns:
        dict: Combined results from all models
    """
    try:
        # Object detection
        detection_preds = models["D3STRON"](image)
        result_image = image.copy()
        result_image, filtered_detections = draw_boxes(
            result_image,
            detection_preds,
            confidence_threshold
        )
        
        # Save annotated image
        img_byte_arr = io.BytesIO()
        result_image.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()
        img_b64 = base64.b64encode(img_byte_arr).decode()
        
        # Classification results
        class_results = {}
        
        # Heem2 model
        try:
            heem2_result = models["Heem2"](image)
            class_results["Heem2"] = heem2_result
        except Exception as e:
            logger.error(f"Error in Heem2 model: {str(e)}")
            class_results["Heem2"] = {"error": str(e)}
        
        # Nandodeomkar model
        try:
            nando_result = models["Nandodeomkar"](image)
            class_results["Nandodeomkar"] = nando_result
        except Exception as e:
            logger.error(f"Error in Nandodeomkar model: {str(e)}")
            class_results["Nandodeomkar"] = {"error": str(e)}
        
        return {
            "success": True,
            "detections": filtered_detections,
            "classifications": class_results,
            "image": img_b64
        }
        
    except Exception as e:
        logger.error(f"Error processing image: {str(e)}")
        raise

# API Endpoints
@app.post("/detect")
@app.post("/api/predict")
async def detect_fracture(
    file: UploadFile = File(...),
    confidence: float = Form(default=0.6)
):
    """
    Endpoint for fracture detection in X-ray images.
    
    Args:
        file (UploadFile): Uploaded image file
        confidence (float): Confidence threshold for predictions
    
    Returns:
        JSONResponse: Detection results including annotated image
    """
    logger.info(f"Received request with confidence threshold: {confidence}")
    
    try:
        # Validate confidence threshold
        if not 0 <= confidence <= 1:
            return JSONResponse(
                status_code=400,
                content={
                    "success": False,
                    "error": "Confidence threshold must be between 0 and 1"
                }
            )
        
        # Read and validate image
        contents = await file.read()
        try:
            image = Image.open(io.BytesIO(contents))
        except Exception as e:
            return JSONResponse(
                status_code=400,
                content={
                    "success": False,
                    "error": f"Invalid image file: {str(e)}"
                }
            )
        
        # Process image
        try:
            results = process_image(image, confidence)
            logger.info("Image processed successfully")
            return JSONResponse(content=results)
            
        except Exception as e:
            logger.error(f"Error processing image: {str(e)}")
            return JSONResponse(
                status_code=500,
                content={
                    "success": False,
                    "error": f"Error processing image: {str(e)}"
                }
            )
            
    except Exception as e:
        logger.error(f"Unexpected error: {str(e)}")
        return JSONResponse(
            status_code=500,
            content={
                "success": False,
                "error": f"Unexpected error: {str(e)}"
            }
        )

# Streamlit UI
def main():
    st.title("🦴 Fracture Detection System")
    st.write("Upload an X-ray image to detect potential fractures")
    
    # File uploader
    uploaded_file = st.file_uploader(
        "Upload X-ray image",
        type=['png', 'jpg', 'jpeg']
    )
    
    # Confidence threshold slider
    confidence = st.slider(
        "Confidence Threshold",
        min_value=0.0,
        max_value=1.0,
        value=0.6,
        step=0.05
    )
    
    if uploaded_file is not None:
        # Display original image
        image = Image.open(uploaded_file)
        st.image(image, caption="Original Image", use_column_width=True)
        
        if st.button("Analyze Image"):
            try:
                # Process image
                results = process_image(image, confidence)
                
                if results["success"]:
                    # Display results
                    st.success("Analysis completed successfully!")
                    
                    # Show annotated image
                    annotated_image = Image.open(io.BytesIO(base64.b64decode(results["image"])))
                    st.image(annotated_image, caption="Detected Fractures", use_column_width=True)
                    
                    # Show detections
                    if results["detections"]:
                        st.subheader("Detected Fractures")
                        for det in results["detections"]:
                            st.write(f"- {det['label']}: {det['score']:.2%} confidence")
                    
                    # Show classifications
                    st.subheader("Classification Results")
                    for model, preds in results["classifications"].items():
                        st.write(f"**{model} Model:**")
                        st.json(preds)
                else:
                    st.error("Analysis failed. Please try again.")
                    
            except Exception as e:
                st.error(f"Error during analysis: {str(e)}")

if __name__ == "__main__":
    main()