File size: 9,676 Bytes
c9e0580
cc165f9
f700114
1a77416
c9e0580
a72cc82
c9e0580
 
 
 
f86faf1
6f17dfe
c9e0580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f17dfe
8b75131
 
 
 
 
 
f700114
383659b
 
 
1a77416
383659b
8d54860
 
952e5d1
383659b
 
 
1a77416
 
 
 
 
 
 
c9e0580
dc9c960
c9e0580
dc9c960
 
c9e0580
dc9c960
 
c9e0580
dc9c960
 
c9e0580
dc9c960
c9e0580
 
dc9c960
1a77416
 
 
e59f527
1a77416
 
dc9c960
383659b
8d54860
1d4ce47
c9e0580
dc9c960
 
8d54860
c9e0580
1a77416
dc9c960
 
9f81278
c9e0580
dc9c960
 
1d4ce47
c9e0580
9f81278
dc9c960
9f81278
dc9c960
9f81278
8d54860
1a77416
f700114
c9e0580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86faf1
c9e0580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592f7b3
c9e0580
 
f86faf1
c9e0580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72cc82
c9e0580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383659b
f700114
c9e0580
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import numpy as np
import colorsys

st.set_page_config(
    page_title="Fraktur Detektion",
    layout="wide",
    initial_sidebar_state="collapsed"
)

st.markdown("""
<style>
    .stApp {
        background: #f0f2f5 !important;
    }
    
    .block-container {
        padding-top: 0 !important;
        padding-bottom: 0 !important;
        max-width: 1400px !important;
    }
    
    .upload-container {
        background: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        margin-bottom: 1rem;
        text-align: center;
    }
    
    .results-container {
        background: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    
    .result-box {
        background: #f8f9fa;
        padding: 0.75rem;
        border-radius: 8px;
        margin: 0.5rem 0;
        border: 1px solid #e9ecef;
    }
    
    h1, h2, h3, h4, p {
        color: #1a1a1a !important;
        margin: 0.5rem 0 !important;
    }
    
    .stImage {
        background: white;
        padding: 0.5rem;
        border-radius: 8px;
        box-shadow: 0 1px 3px rgba(0,0,0,0.1);
    }
    
    .stImage > img {
        max-height: 300px !important;
        width: auto !important;
        margin: 0 auto !important;
        display: block !important;
    }
    
    [data-testid="stFileUploader"] {
        width: 100% !important;
    }
    
    .stFileUploaderFileName {
        color: #1a1a1a !important;
    }
    
    .stButton > button {
        width: 200px;
        background-color: #f8f9fa !important;
        color: #1a1a1a !important;
        border: 1px solid #e9ecef !important;
        padding: 0.5rem 1rem !important;
        border-radius: 5px !important;
        transition: all 0.3s ease !important;
    }
    
    .stButton > button:hover {
        background-color: #e9ecef !important;
        transform: translateY(-1px);
    }
    
    #MainMenu, footer, header, [data-testid="stToolbar"] {
        display: none !important;
    }
    
    /* Hide deprecation warning */
    [data-testid="stExpander"], .element-container:has(>.stAlert) {
        display: none !important;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_models():
    return {
        "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
        "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
        "RöntgenMeister": pipeline("image-classification", 
            model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
    }

def translate_label(label):
    translations = {
        "fracture": "Knochenbruch",
        "no fracture": "Kein Knochenbruch",
        "normal": "Normal",
        "abnormal": "Auffällig",
        "F1": "Knochenbruch",
        "NF": "Kein Knochenbruch"
    }
    return translations.get(label.lower(), label)

def create_heatmap_overlay(image, box, score):
    overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
    draw = ImageDraw.Draw(overlay)
    
    x1, y1 = box['xmin'], box['ymin']
    x2, y2 = box['xmax'], box['ymax']
    
    # Couleur basée sur le score
    if score > 0.8:
        fill_color = (255, 0, 0, 100)  # Rouge
        border_color = (255, 0, 0, 255)
    elif score > 0.6:
        fill_color = (255, 165, 0, 100)  # Orange
        border_color = (255, 165, 0, 255)
    else:
        fill_color = (255, 255, 0, 100)  # Jaune
        border_color = (255, 255, 0, 255)
    
    # Rectangle semi-transparent
    draw.rectangle([x1, y1, x2, y2], fill=fill_color)
    
    # Bordure
    draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
    
    return overlay

def draw_boxes(image, predictions):
    result_image = image.copy().convert('RGBA')
    
    for pred in predictions:
        box = pred['box']
        score = pred['score']
        
        # Création de l'overlay
        overlay = create_heatmap_overlay(image, box, score)
        result_image = Image.alpha_composite(result_image, overlay)
        
        # Ajout du texte
        draw = ImageDraw.Draw(result_image)
        temp = 36.5 + (score * 2.5)
        label = f"{translate_label(pred['label'])} ({score:.1%}{temp:.1f}°C)"
        
        # Fond noir pour le texte
        text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
        draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
        
        # Texte en blanc
        draw.text(
            (box['xmin'], box['ymin']-20),
            label,
            fill=(255, 255, 255, 255)
        )
    
    return result_image

def main():
    models = load_models()
    
    with st.container():
        st.write("### 📤 Röntgenbild hochladen")
        uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
        
        col1, col2 = st.columns([2, 1])
        with col1:
            conf_threshold = st.slider(
                "Konfidenzschwelle",
                min_value=0.0, max_value=1.0,
                value=0.60, step=0.05,
                label_visibility="visible"
            )
        with col2:
            analyze_button = st.button("Analysieren")

    if uploaded_file and analyze_button:
        with st.spinner("Bild wird analysiert..."):
            image = Image.open(uploaded_file)
            results_container = st.container()
            
            predictions_watcher = models["KnochenWächter"](image)
            predictions_master = models["RöntgenMeister"](image)
            predictions_locator = models["KnochenAuge"](image)
            
            has_fracture = False
            max_fracture_score = 0
            filtered_locations = [p for p in predictions_locator 
                                if p['score'] >= conf_threshold]
            
            for pred in predictions_watcher:
                if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
                    has_fracture = True
                    max_fracture_score = max(max_fracture_score, pred['score'])
            
            with results_container:
                st.write("### 🔍 Analyse Ergebnisse")
                col1, col2 = st.columns(2)
                
                with col1:
                    st.write("#### 🤖 KI-Diagnose")
                    
                    st.markdown("#### 🛡️ KnochenWächter")
                    # Afficher tous les résultats de KnochenWächter
                    for pred in predictions_watcher:
                        confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
                        label_lower = pred['label'].lower()
                        # Mettre à jour max_fracture_score seulement pour les fractures
                        if pred['score'] >= conf_threshold and 'fracture' in label_lower:
                            has_fracture = True
                            max_fracture_score = max(max_fracture_score, pred['score'])
                        # Afficher tous les résultats
                        st.markdown(f"""
                            <div class="result-box" style="color: #1a1a1a;">
                                <span style="color: {confidence_color}; font-weight: 500;">
                                    {pred['score']:.1%}
                                </span> - {translate_label(pred['label'])}
                            </div>
                        """, unsafe_allow_html=True)
                    
                    st.markdown("#### 🎓 RöntgenMeister")
                    # Afficher tous les résultats de RöntgenMeister
                    for pred in predictions_master:
                        confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
                        st.markdown(f"""
                            <div class="result-box" style="color: #1a1a1a;">
                                <span style="color: {confidence_color}; font-weight: 500;">
                                    {pred['score']:.1%}
                                </span> - {translate_label(pred['label'])}
                            </div>
                        """, unsafe_allow_html=True)
                    
                    if max_fracture_score > 0:
                        st.write("#### 📊 Wahrscheinlichkeit")
                        no_fracture_prob = 1 - max_fracture_score
                        st.markdown(f"""
                            <div class="result-box" style="color: #1a1a1a;">
                                Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
                                Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
                            </div>
                        """, unsafe_allow_html=True)
                
                with col2:
                    predictions = models["KnochenAuge"](image)
                    filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
                    
                    if filtered_preds:
                        st.write("#### 🎯 Fraktur Lokalisation")
                        result_image = draw_boxes(image, filtered_preds)
                        st.image(result_image, use_container_width=True)
                    else:
                        st.write("#### 🖼️ Röntgenbild")
                        st.image(image, use_container_width=True)

if __name__ == "__main__":
    main()