Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
from PIL import Image, ImageDraw
|
5 |
import io
|
6 |
-
import
|
7 |
-
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
import numpy as np
|
10 |
import json
|
|
|
11 |
from starlette.responses import JSONResponse
|
12 |
-
import uvicorn
|
13 |
-
from threading import Thread
|
14 |
|
15 |
# FastAPI app
|
16 |
app = FastAPI()
|
@@ -24,19 +24,27 @@ app.add_middleware(
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
-
# Load models
|
28 |
@st.cache_resource
|
29 |
def load_models():
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
models = load_models()
|
38 |
|
39 |
def draw_boxes(image, predictions, threshold=0.6):
|
|
|
|
|
|
|
40 |
draw = ImageDraw.Draw(image)
|
41 |
filtered_preds = [p for p in predictions if p['score'] >= threshold]
|
42 |
|
@@ -44,33 +52,37 @@ def draw_boxes(image, predictions, threshold=0.6):
|
|
44 |
box = pred['box']
|
45 |
label = f"{pred['label']} ({pred['score']:.2%})"
|
46 |
|
|
|
47 |
draw.rectangle(
|
48 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
49 |
outline="red",
|
50 |
width=2
|
51 |
)
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
return image, filtered_preds
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
try:
|
61 |
-
contents = await file.read()
|
62 |
-
image = Image.open(io.BytesIO(contents))
|
63 |
-
|
64 |
# Object detection
|
65 |
detection_preds = models["D3STRON"](image)
|
66 |
result_image = image.copy()
|
67 |
-
result_image, filtered_detections = draw_boxes(result_image, detection_preds,
|
68 |
|
69 |
# Save result image
|
70 |
img_byte_arr = io.BytesIO()
|
71 |
result_image.save(img_byte_arr, format='PNG')
|
72 |
img_byte_arr = img_byte_arr.getvalue()
|
73 |
-
|
74 |
|
75 |
# Classifications
|
76 |
class_results = {
|
@@ -78,12 +90,38 @@ async def predict(file: UploadFile = File(...), confidence: float = Form(default
|
|
78 |
"Nandodeomkar": models["Nandodeomkar"](image)
|
79 |
}
|
80 |
|
81 |
-
return
|
82 |
"success": True,
|
83 |
"detections": filtered_detections,
|
84 |
"classifications": class_results,
|
85 |
-
"image":
|
86 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
except Exception as e:
|
89 |
return JSONResponse({
|
@@ -91,49 +129,77 @@ async def predict(file: UploadFile = File(...), confidence: float = Form(default
|
|
91 |
"error": str(e)
|
92 |
}, status_code=500)
|
93 |
|
94 |
-
# Streamlit
|
95 |
-
def
|
96 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
if uploaded_file:
|
102 |
-
#
|
103 |
-
|
104 |
-
st.image(image, caption="Original Röntgenbild", use_column_width=True)
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
class_results = {
|
124 |
-
"Heem2": models["Heem2"](image),
|
125 |
-
"Nandodeomkar": models["Nandodeomkar"](image)
|
126 |
-
}
|
127 |
-
st.json(class_results)
|
128 |
|
129 |
def run_fastapi():
|
|
|
130 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
-
#
|
134 |
-
api_thread = Thread(target=run_fastapi)
|
135 |
-
api_thread.daemon = True
|
136 |
api_thread.start()
|
137 |
|
138 |
-
#
|
139 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
import base64
|
3 |
+
from fastapi import FastAPI, Request
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from transformers import pipeline
|
6 |
import torch
|
7 |
from PIL import Image, ImageDraw
|
8 |
import io
|
9 |
+
from threading import Thread
|
10 |
+
import uvicorn
|
|
|
|
|
11 |
import json
|
12 |
+
import numpy as np
|
13 |
from starlette.responses import JSONResponse
|
|
|
|
|
14 |
|
15 |
# FastAPI app
|
16 |
app = FastAPI()
|
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
+
# Load models with caching
|
28 |
@st.cache_resource
|
29 |
def load_models():
|
30 |
+
try:
|
31 |
+
return {
|
32 |
+
"D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
33 |
+
"Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
|
34 |
+
"Nandodeomkar": pipeline("image-classification",
|
35 |
+
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
36 |
+
}
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"Error loading models: {str(e)}")
|
39 |
+
return None
|
40 |
|
41 |
+
# Initialize models
|
42 |
models = load_models()
|
43 |
|
44 |
def draw_boxes(image, predictions, threshold=0.6):
|
45 |
+
"""
|
46 |
+
Draw bounding boxes on the image for fracture detections
|
47 |
+
"""
|
48 |
draw = ImageDraw.Draw(image)
|
49 |
filtered_preds = [p for p in predictions if p['score'] >= threshold]
|
50 |
|
|
|
52 |
box = pred['box']
|
53 |
label = f"{pred['label']} ({pred['score']:.2%})"
|
54 |
|
55 |
+
# Draw rectangle
|
56 |
draw.rectangle(
|
57 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
58 |
outline="red",
|
59 |
width=2
|
60 |
)
|
61 |
|
62 |
+
# Draw label
|
63 |
+
draw.text(
|
64 |
+
(box['xmin'], box['ymin'] - 10),
|
65 |
+
label,
|
66 |
+
fill="red"
|
67 |
+
)
|
68 |
|
69 |
return image, filtered_preds
|
70 |
|
71 |
+
def process_image(image, confidence_threshold):
|
72 |
+
"""
|
73 |
+
Process an image through all models and return results
|
74 |
+
"""
|
75 |
try:
|
|
|
|
|
|
|
76 |
# Object detection
|
77 |
detection_preds = models["D3STRON"](image)
|
78 |
result_image = image.copy()
|
79 |
+
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence_threshold)
|
80 |
|
81 |
# Save result image
|
82 |
img_byte_arr = io.BytesIO()
|
83 |
result_image.save(img_byte_arr, format='PNG')
|
84 |
img_byte_arr = img_byte_arr.getvalue()
|
85 |
+
result_base64 = base64.b64encode(img_byte_arr).decode()
|
86 |
|
87 |
# Classifications
|
88 |
class_results = {
|
|
|
90 |
"Nandodeomkar": models["Nandodeomkar"](image)
|
91 |
}
|
92 |
|
93 |
+
return {
|
94 |
"success": True,
|
95 |
"detections": filtered_detections,
|
96 |
"classifications": class_results,
|
97 |
+
"image": result_base64
|
98 |
+
}
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
return {
|
102 |
+
"success": False,
|
103 |
+
"error": str(e)
|
104 |
+
}
|
105 |
+
|
106 |
+
# FastAPI endpoint
|
107 |
+
@app.post("/api/predict")
|
108 |
+
async def predict(request: Request):
|
109 |
+
try:
|
110 |
+
# Read JSON request body
|
111 |
+
body = await request.json()
|
112 |
+
|
113 |
+
# Extract base64 image and confidence threshold
|
114 |
+
image_base64 = body['data'][0]
|
115 |
+
confidence_threshold = float(body['data'][1])
|
116 |
+
|
117 |
+
# Decode base64 image
|
118 |
+
image_bytes = base64.b64decode(image_base64)
|
119 |
+
image = Image.open(io.BytesIO(image_bytes))
|
120 |
+
|
121 |
+
# Process image
|
122 |
+
result = process_image(image, confidence_threshold)
|
123 |
+
|
124 |
+
return JSONResponse(result)
|
125 |
|
126 |
except Exception as e:
|
127 |
return JSONResponse({
|
|
|
129 |
"error": str(e)
|
130 |
}, status_code=500)
|
131 |
|
132 |
+
# Streamlit interface
|
133 |
+
def streamlit_interface():
|
134 |
+
st.set_page_config(
|
135 |
+
page_title="Fracture Detection System",
|
136 |
+
page_icon="🦴",
|
137 |
+
layout="wide"
|
138 |
+
)
|
139 |
+
|
140 |
+
st.title("🦴 Système de Détection de Fractures")
|
141 |
|
142 |
+
# File uploader
|
143 |
+
uploaded_file = st.file_uploader(
|
144 |
+
"Upload X-ray Image",
|
145 |
+
type=['png', 'jpg', 'jpeg'],
|
146 |
+
help="Upload an X-ray image for fracture detection"
|
147 |
+
)
|
148 |
+
|
149 |
+
# Confidence threshold slider
|
150 |
+
confidence = st.slider(
|
151 |
+
"Confidence Threshold",
|
152 |
+
min_value=0.0,
|
153 |
+
max_value=1.0,
|
154 |
+
value=0.6,
|
155 |
+
step=0.05,
|
156 |
+
help="Adjust the confidence threshold for detection"
|
157 |
+
)
|
158 |
|
159 |
if uploaded_file:
|
160 |
+
# Display original image
|
161 |
+
col1, col2 = st.columns(2)
|
|
|
162 |
|
163 |
+
with col1:
|
164 |
+
st.subheader("Original X-ray")
|
165 |
+
image = Image.open(uploaded_file)
|
166 |
+
st.image(image, use_column_width=True)
|
167 |
+
|
168 |
+
if st.button("Analyze"):
|
169 |
+
with st.spinner('Analyzing image...'):
|
170 |
+
try:
|
171 |
+
# Process image
|
172 |
+
results = process_image(image, confidence)
|
173 |
+
|
174 |
+
if results["success"]:
|
175 |
+
with col2:
|
176 |
+
st.subheader("Detection Results")
|
177 |
+
# Display processed image
|
178 |
+
result_image = Image.open(io.BytesIO(base64.b64decode(results["image"])))
|
179 |
+
st.image(result_image, use_column_width=True)
|
180 |
+
|
181 |
+
# Display detections
|
182 |
+
st.subheader("Detected Fractures:")
|
183 |
+
for detection in results["detections"]:
|
184 |
+
st.write(f"- {detection['label']}: {detection['score']:.2%}")
|
185 |
+
|
186 |
+
# Display classifications
|
187 |
+
st.subheader("Classification Results:")
|
188 |
+
st.json(results["classifications"])
|
189 |
+
else:
|
190 |
+
st.error("Error processing image: " + results.get("error", "Unknown error"))
|
191 |
|
192 |
+
except Exception as e:
|
193 |
+
st.error(f"Error during analysis: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
def run_fastapi():
|
196 |
+
"""Run the FastAPI server"""
|
197 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
+
# Start FastAPI in a separate thread
|
201 |
+
api_thread = Thread(target=run_fastapi, daemon=True)
|
|
|
202 |
api_thread.start()
|
203 |
|
204 |
+
# Run Streamlit interface
|
205 |
+
streamlit_interface()
|