File size: 34,812 Bytes
5d68932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "a38a8be9-9f57-4d4e-b101-704e636db4fe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: tensorflow in c:\\programdata\\anaconda3\\lib\\site-packages (2.19.0)\n",
"Requirement already satisfied: scikit-learn in c:\\programdata\\anaconda3\\lib\\site-packages (1.6.1)\n",
"Requirement already satisfied: pandas in c:\\programdata\\anaconda3\\lib\\site-packages (2.2.3)\n",
"Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (2.1.0)\n",
"Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (1.6.3)\n",
"Requirement already satisfied: flatbuffers>=24.3.25 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (25.2.10)\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (0.6.0)\n",
"Requirement already satisfied: google-pasta>=0.1.1 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (0.2.0)\n",
"Requirement already satisfied: libclang>=13.0.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (18.1.1)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (3.4.0)\n",
"Requirement already satisfied: packaging in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (24.2)\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (5.29.3)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (2.32.3)\n",
"Requirement already satisfied: setuptools in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (72.1.0)\n",
"Requirement already satisfied: six>=1.12.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.17.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (2.5.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (4.12.2)\n",
"Requirement already satisfied: wrapt>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.17.0)\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.71.0)\n",
"Requirement already satisfied: tensorboard~=2.19.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (2.19.0)\n",
"Requirement already satisfied: keras>=3.5.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (3.10.0)\n",
"Requirement already satisfied: numpy<2.2.0,>=1.26.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.26.4)\n",
"Requirement already satisfied: h5py>=3.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (3.12.1)\n",
"Requirement already satisfied: ml-dtypes<1.0.0,>=0.5.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (0.5.1)\n",
"Requirement already satisfied: scipy>=1.6.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (1.13.1)\n",
"Requirement already satisfied: joblib>=1.2.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (1.4.2)\n",
"Requirement already satisfied: threadpoolctl>=3.1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (3.5.0)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2.9.0.post0)\n",
"Requirement already satisfied: pytz>=2020.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2024.1)\n",
"Requirement already satisfied: tzdata>=2022.7 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2023.3)\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from astunparse>=1.6.0->tensorflow) (0.45.1)\n",
"Requirement already satisfied: rich in c:\\programdata\\anaconda3\\lib\\site-packages (from keras>=3.5.0->tensorflow) (13.9.4)\n",
"Requirement already satisfied: namex in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from keras>=3.5.0->tensorflow) (0.0.8)\n",
"Requirement already satisfied: optree in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from keras>=3.5.0->tensorflow) (0.14.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2025.1.31)\n",
"Requirement already satisfied: markdown>=2.6.8 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard~=2.19.0->tensorflow) (3.4.1)\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorboard~=2.19.0->tensorflow) (0.7.2)\n",
"Requirement already satisfied: werkzeug>=1.0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard~=2.19.0->tensorflow) (3.1.3)\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from werkzeug>=1.0.1->tensorboard~=2.19.0->tensorflow) (3.0.2)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from rich->keras>=3.5.0->tensorflow) (2.2.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from rich->keras>=3.5.0->tensorflow) (2.15.1)\n",
"Requirement already satisfied: mdurl~=0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow) (0.1.0)\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install tensorflow scikit-learn pandas\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0b044499-8bd6-4e40-84b9-2d7f22c180b1",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"data = {\n",
" \"sequence\": [\n",
" \"DOWN,RIGHT,PUNCH\",\n",
" \"RIGHT,DOWN,RIGHT,KICK\",\n",
" \"LEFT,LEFT,PUNCH\",\n",
" \"DOWN,KICK\",\n",
" \"UP,PUNCH\",\n",
" \"RIGHT,RIGHT,KICK\",\n",
" \"DOWN,DOWN,RIGHT,PUNCH\",\n",
" \"LEFT,DOWN,RIGHT,PUNCH\"\n",
" ],\n",
" \"move\": [\n",
" \"Hadouken\",\n",
" \"Shoryuken\",\n",
" \"Dash Punch\",\n",
" \"Low Kick\",\n",
" \"Jump Punch\",\n",
" \"Double Kick\",\n",
" \"Super Hadouken\",\n",
" \"Combo Strike\"\n",
" ]\n",
"}\n",
"\n",
"df = pd.DataFrame(data)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "606f2fd1-42b8-49f0-87b7-cc2f5c450662",
"metadata": {},
"outputs": [],
"source": [
"# Tokenizer ve Label Encoding\n",
"\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
"\n",
"# Joystick hareketlerini tokenize et\n",
"tokenizer = Tokenizer(filters='', lower=False, split=',')\n",
"tokenizer.fit_on_texts(df['sequence'])\n",
"\n",
"X_seq = tokenizer.texts_to_sequences(df['sequence'])\n",
"X_pad = pad_sequences(X_seq, padding='post') # sekanslarฤฑ eลitle\n",
"\n",
"# Etiketleri sayฤฑsallaลtฤฑr\n",
"le = LabelEncoder()\n",
"y_encoded = le.fit_transform(df['move'])\n",
"\n",
"# Bilgiler\n",
"vocab_size = len(tokenizer.word_index) + 1\n",
"num_classes = len(le.classes_)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e654d9b3-faea-4888-a4a3-e3cc6b762940",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/100\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\ProgramData\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\core\\embedding.py:97: UserWarning: Argument `input_length` is deprecated. Just remove it.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - accuracy: 0.2500 - loss: 2.0767\n",
"Epoch 2/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.2500 - loss: 2.0758\n",
"Epoch 3/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.3750 - loss: 2.0749\n",
"Epoch 4/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.5000 - loss: 2.0739\n",
"Epoch 5/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.6250 - loss: 2.0730\n",
"Epoch 6/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.5000 - loss: 2.0720\n",
"Epoch 7/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 2.0710\n",
"Epoch 8/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.5000 - loss: 2.0699\n",
"Epoch 9/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.5000 - loss: 2.0689\n",
"Epoch 10/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.5000 - loss: 2.0677\n",
"Epoch 11/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.5000 - loss: 2.0665\n",
"Epoch 12/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.5000 - loss: 2.0653\n",
"Epoch 13/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 2.0640\n",
"Epoch 14/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0626\n",
"Epoch 15/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0612\n",
"Epoch 16/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0597\n",
"Epoch 17/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.6250 - loss: 2.0581\n",
"Epoch 18/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.6250 - loss: 2.0564\n",
"Epoch 19/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.6250 - loss: 2.0546\n",
"Epoch 20/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0527\n",
"Epoch 21/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.6250 - loss: 2.0508\n",
"Epoch 22/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0487\n",
"Epoch 23/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6250 - loss: 2.0464\n",
"Epoch 24/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.6250 - loss: 2.0441\n",
"Epoch 25/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0415\n",
"Epoch 26/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.6250 - loss: 2.0389\n",
"Epoch 27/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0361\n",
"Epoch 28/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0331\n",
"Epoch 29/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0299\n",
"Epoch 30/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.6250 - loss: 2.0265\n",
"Epoch 31/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.6250 - loss: 2.0229\n",
"Epoch 32/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.6250 - loss: 2.0191\n",
"Epoch 33/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.6250 - loss: 2.0151\n",
"Epoch 34/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.6250 - loss: 2.0108\n",
"Epoch 35/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.6250 - loss: 2.0062\n",
"Epoch 36/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6250 - loss: 2.0013\n",
"Epoch 37/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 1.9961\n",
"Epoch 38/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 1.9906\n",
"Epoch 39/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.6250 - loss: 1.9848\n",
"Epoch 40/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.7500 - loss: 1.9785\n",
"Epoch 41/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.8750 - loss: 1.9719\n",
"Epoch 42/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - accuracy: 0.8750 - loss: 1.9649\n",
"Epoch 43/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.8750 - loss: 1.9574\n",
"Epoch 44/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.8750 - loss: 1.9494\n",
"Epoch 45/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.8750 - loss: 1.9410\n",
"Epoch 46/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.8750 - loss: 1.9320\n",
"Epoch 47/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.8750 - loss: 1.9225\n",
"Epoch 48/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.8750 - loss: 1.9123\n",
"Epoch 49/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.8750 - loss: 1.9016\n",
"Epoch 50/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - accuracy: 0.8750 - loss: 1.8902\n",
"Epoch 51/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.8750 - loss: 1.8781\n",
"Epoch 52/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.8750 - loss: 1.8653\n",
"Epoch 53/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8750 - loss: 1.8517\n",
"Epoch 54/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8750 - loss: 1.8374\n",
"Epoch 55/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.8750 - loss: 1.8223\n",
"Epoch 56/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.8063\n",
"Epoch 57/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.7895\n",
"Epoch 58/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7500 - loss: 1.7718\n",
"Epoch 59/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7500 - loss: 1.7532\n",
"Epoch 60/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7500 - loss: 1.7338\n",
"Epoch 61/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.7134\n",
"Epoch 62/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.6922\n",
"Epoch 63/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.6701\n",
"Epoch 64/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.6471\n",
"Epoch 65/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.6233\n",
"Epoch 66/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7500 - loss: 1.5988\n",
"Epoch 67/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.7500 - loss: 1.5735\n",
"Epoch 68/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7500 - loss: 1.5476\n",
"Epoch 69/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.5211\n",
"Epoch 70/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7500 - loss: 1.4941\n",
"Epoch 71/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.4667\n",
"Epoch 72/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.4390\n",
"Epoch 73/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7500 - loss: 1.4110\n",
"Epoch 74/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.3829\n",
"Epoch 75/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.3547\n",
"Epoch 76/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.3266\n",
"Epoch 77/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.2986\n",
"Epoch 78/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.2707\n",
"Epoch 79/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.2430\n",
"Epoch 80/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.2157\n",
"Epoch 81/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.8750 - loss: 1.1886\n",
"Epoch 82/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 1.1618\n",
"Epoch 83/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 1.0000 - loss: 1.1354\n",
"Epoch 84/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 1.1093\n",
"Epoch 85/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 1.0835\n",
"Epoch 86/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 1.0000 - loss: 1.0581\n",
"Epoch 87/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 1.0000 - loss: 1.0330\n",
"Epoch 88/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 1.0000 - loss: 1.0082\n",
"Epoch 89/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.9838\n",
"Epoch 90/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 1.0000 - loss: 0.9596\n",
"Epoch 91/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.9357\n",
"Epoch 92/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.9121\n",
"Epoch 93/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.8888\n",
"Epoch 94/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 1.0000 - loss: 0.8656\n",
"Epoch 95/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.8427\n",
"Epoch 96/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.8199\n",
"Epoch 97/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 1.0000 - loss: 0.7974\n",
"Epoch 98/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.7750\n",
"Epoch 99/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 1.0000 - loss: 0.7527\n",
"Epoch 100/100\n",
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.7307\n"
]
},
{
"data": {
"text/plain": [
"<keras.src.callbacks.history.History at 0x230194c7410>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" # LSTM Modeli Oluลtur ve Eฤit\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Embedding, LSTM, Dense\n",
"\n",
"model = Sequential([\n",
" Embedding(input_dim=vocab_size, output_dim=16, input_length=X_pad.shape[1]),\n",
" LSTM(32),\n",
" Dense(num_classes, activation='softmax')\n",
"])\n",
"\n",
"model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
"model.fit(X_pad, y_encoded, epochs=100, verbose=1)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f5d9bb8c-c4da-45f9-93d6-23f083368c05",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32mโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step\n"
]
},
{
"data": {
"text/plain": [
"'Hadouken'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Tahmin Fonksiyonu\n",
"\n",
"import numpy as np\n",
"\n",
"def predict_move(sequence_text):\n",
" seq = tokenizer.texts_to_sequences([sequence_text])\n",
" pad = pad_sequences(seq, maxlen=X_pad.shape[1], padding='post')\n",
" pred = model.predict(pad)\n",
" label = le.inverse_transform([np.argmax(pred)])\n",
" return label[0]\n",
"\n",
"# รrnek:\n",
"predict_move(\"DOWN,RIGHT,PUNCH\") # Hadouken\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "89a797c1-fa12-4552-951a-4dcede799be8",
"metadata": {},
"outputs": [],
"source": [
"model.save(\"joystick_move_model.keras\")\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "847f55ca-1b05-41f8-a0b8-57af26f1fb90",
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"# Tokenizer\n",
"with open(\"tokenizer.pkl\", \"wb\") as f:\n",
" pickle.dump(tokenizer, f)\n",
"\n",
"# LabelEncoder\n",
"with open(\"label_encoder.pkl\", \"wb\") as f:\n",
" pickle.dump(le, f)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8343757-6301-49f2-894f-30ce3df0b601",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|