Spaces:
Sleeping
Sleeping
File size: 17,837 Bytes
be43ea2 12f3928 be43ea2 5672a87 d20307d be43ea2 d20307d 5672a87 d20307d 1a0610b d20307d 75a0851 4c9590c 75a0851 5672a87 75a0851 99223ba 75a0851 99223ba 75a0851 5672a87 75a0851 5672a87 75a0851 5672a87 75a0851 fad4041 75a0851 85cf6bb 5a1fbca 75a0851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import os
import urllib.request
model_urls = {
"sam2_hiera_tiny.pt": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt",
"sam2_hiera_small.pt": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt",
"sam2_hiera_base_plus.pt": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt",
"sam2_hiera_large.pt": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt",
}
def download_models():
for filename, url in model_urls.items():
if not os.path.exists(filename):
print(f"Downloading {filename}...")
urllib.request.urlretrieve(url, filename)
else:
print(f"{filename} already exists, skipping download.")
download_models()
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors
import numpy as np
import pandas as pd
import cv2
import torch
import torch.nn as nn
from PIL import Image
import matplotlib.pyplot as plt
import seaborn as sns
from fastai.vision import *
from fastai.vision.all import *
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import tensorflow as tf
import re
import json
import ast
import openai
import tiktoken
import shutil
import concurrent
import textwrap
from time import sleep
from csv import writer
from tqdm import tqdm
from scipy import spatial
from pptx import Presentation
from PyPDF2 import PdfReader
from openai import OpenAI
from IPython.display import display, Markdown, Latex, HTML
from transformers import GPT2Tokenizer
from termcolor import colored
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
sam2_checkpoint = "sam2_hiera_small.pt"
model_cfg = "sam2_hiera_s.yaml"
device = "cuda" if torch.cuda.is_available() else "cpu"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
predictor = SAM2ImagePredictor(sam2_model)
checkpoint_path = "sam2_lr0.0001_wd0.01_900.torch"
predictor.model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cpu')))
def display_thread(thread_id):
for message in client.beta.threads.messages.list(thread_id=thread_id):
display(message.content[0].text.value)
def read_file(filepath, max_pages=None):
if filepath.endswith('.pdf'):
return read_pdf(filepath, max_pages)
elif filepath.endswith('.txt'):
return read_text_file(filepath)
elif filepath.endswith('.docx'):
return read_docx(filepath)
elif filepath.endswith('.xlsx'):
return read_xlsx(filepath)
elif filepath.endswith('.pptx'):
return read_pptx(filepath)
else:
raise ValueError("Unsupported file type")
def read_pdf(filepath, max_pages=None):
reader = PdfReader(filepath)
pdf_text = ""
page_number = 0
for page in reader.pages:
page_number += 1
if max_pages and (page_number > max_pages):
break
page_text = page.extract_text()
if page_text:
page_text = re.sub(r'\n+', ' ', page_text)
pdf_text += page_text + f"\nPage Number: {page_number}\n"
else:
pdf_text += f"\n[No extractable text on Page {page_number}]\n"
return pdf_text
calc_similarity = lambda x, y: 1 - spatial.distance.cosine(x.data[0].embedding, y.data[0].embedding)
def pretty_print(df):
return display(HTML(df.to_html().replace("\\n", "<br>")))
def read_directory(directory):
assert os.path.exists(directory)
res_dict = {}
for filename in os.listdir(directory):
if filename.endswith(('pdf', 'txt', 'docx', 'pptx')):
filepath = os.path.join(directory, filename)
text = read_file(filepath, 2)
res_dict[filename] = (filepath, text)
df = pd.DataFrame(res_dict).T
df = df.reset_index()
df.columns = ["Filename", "Filepath", "Text"]
return df
# Initialize GPT tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.model_max_length = int(1e30)
def ask_chatbot(question, context, m):
max_context_tokens = 16385
truncated_context = truncate_context(context, max_context_tokens)
response = client.chat.completions.create(
model=m,
messages=[
{"role": "system", "content": """You are an expert doctor who treats chronic wounds, and you know every single thing about wounds and how to treat them as well as preventing them from getting worse.
The user will provide the following inputs: Name, Gender, Age, Pre-existing Medical Conditions, Wound Part of Body, Wound Classficiation, Colors of the Wounds (as percents out of 100).
Please provide the medical advice in 2 concise paragraphs that must incorporate the following key features everytime:
1. **Wound Risk Score (1-100):** You will be given a PDF and you shall review it and use it to aid in your risk score generation. The wound risk score should be between 1-100! Of course, any color percentages **less than 3** shouldn't be taken into consideration when making the score.
**Make sure to be specific!**
2. **Medical Advice:** Give the patient bulleted directions on how to monitor and care for their wound. **Make sure to include if the person needs to go see a doctor as soon as possible.**"""},
{"role": "user", "content": truncated_context},
{"role": "user", "content": question}
]
)
return response.choices[0].message.content
def truncate_context(context, max_tokens):
tokens = tokenizer.encode(context)
if len(tokens) > max_tokens:
truncated_tokens = tokens[:max_tokens]
return tokenizer.decode(truncated_tokens)
return context
file_content = read_file("Wound Healing Risk Assessment.pdf")
api_key = os.environ.get("OPENAI_API_KEY")
client = OpenAI(api_key=api_key)
model="gpt-4o-mini"
assistant = client.beta.assistants.create(
name="Wound Treater",
instructions="""You are an expert doctor who treats chronic wounds, and you know every single thing about wounds and how to treat them as well as preventing them from getting worse.
The user will provide the following inputs: Name, Gender, Age, Pre-existing Medical Conditions, Wound Part of Body, Wound Classficiation, Colors of the Wounds (as percents out of 100).
Please provide the medical advice in 2 concise paragraphs that must incorporate the following key features everytime:
1. **Wound Risk Score (1-100):** Generate a wound risk score from 1-100, 1 being no risk and 100 being going to see a medical professional immediately! Of course, any color percentages **less than 3** shouldn't be taken into consideration when making the score.
**Make sure to be specific and list the components of the wound risk score.**
2. **Medical Advice:** Give the patient directions on how to monitor and care for their wound. **Make sure to include if the person needs to go see a doctor as soon as possible.**""",
model=model)
def get_assistant_response(name="None", gender="None", age="None", conditions="None", bodyPart="None", typeWound="None", red="None", orange="None", yellow="None", magenta="None", white="None", gray="None", black="None"):
thread = client.beta.threads.create()
input_text = "Name: " + str(name) + ", Gender: " + str(gender) + ", Age: " + str(age) + ", Pre-Existing Medical Conditions: " + str(conditions) + ", Part of Body: " + str(bodyPart) + ", Type of Wound: " + str(typeWound) + ", Wound Colors (Red, Orange, Yellow, Magenta, White, Gray, Black): [" + str(red) + ", " + str(orange) + ", " + str(yellow) + ", " + str(magenta) + ", " + str(white) + ", " + str(gray) + ", " + str(black) + "]"
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=input_text)
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id,
)
sleep(15)
return input_text, client.beta.threads.messages.list(thread.id).data[0].content[0].text.value
def get_response_with_context(name="None", gender="None", age="None", conditions="None", bodyPart="None", typeWound="None", red="None", orange="None", yellow="None", magenta="None", white="None", gray="None", black="None"):
input_text = "Name: " + str(name) + ", Gender: " + str(gender) + ", Age: " + str(age) + ", Pre-Existing Medical Conditions: " + str(conditions) + ", Part of Body: " + str(bodyPart) + ", Type of Wound: " + str(typeWound) + ", Wound Colors (Red, Orange, Yellow, Magenta, White, Gray, Black): [" + str(red) + ", " + str(orange) + ", " + str(yellow) + ", " + str(magenta) + ", " + str(white) + ", " + str(gray) + ", " + str(black) + "]"
response = ask_chatbot(input_text, file_content, model)
return input_text, response
wounds = []
learn = load_learner('model.pkl')
def one_step_inference(image_path, threshold=0.5):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
predictor.set_image(image)
high_res_features = [feat[-1].unsqueeze(0) for feat in predictor._features["high_res_feats"]]
with torch.no_grad():
sparse_embeddings, dense_embeddings = predictor.model.sam_prompt_encoder(points=None, boxes=None, masks=None)
low_res_masks, _, _, _ = predictor.model.sam_mask_decoder(
image_embeddings=predictor._features["image_embed"][-1].unsqueeze(0),
image_pe=predictor.model.sam_prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
repeat_image=False,
high_res_features=high_res_features,)
mask = predictor._transforms.postprocess_masks(low_res_masks, predictor._orig_hw[-1])
final_mask = (mask > threshold).cpu().detach().numpy()[0][0]
final_mask = final_mask.astype("uint8")
selected_pixels = cv2.bitwise_and(image_rgb, image_rgb, mask=final_mask)
selected_pixels = image_hsv[final_mask == 1]
colors = classify_colors(selected_pixels)
return colors["Red"], colors["Orange"], colors["Yellow"], colors["Magenta"], colors["White"], colors["Gray"], colors["Black"]
def classify_colors(hsv_pixels):
color_ranges = {
'Red': [(0, 50, 50), (10, 255, 255)], # Red wraps around
'Red2': [(170, 50, 50), (179, 255, 255)],
'Orange': [(11, 50, 50), (25, 255, 255)],
'Yellow': [(26, 50, 50), (35, 255, 255)],
'Green': [(36, 50, 50), (85, 255, 255)],
'Cyan': [(86, 50, 50), (95, 255, 255)],
'Blue': [(96, 50, 50), (130, 255, 255)],
'Purple': [(131, 50, 50), (160, 255, 255)],
'Magenta': [(161, 50, 50), (169, 255, 255)],
'White': [(0, 0, 200), (179, 55, 255)], # High brightness, low saturation
'Gray': [(0, 0, 50), (179, 50, 200)], # Low saturation, varying brightness
'Black': [(0, 0, 0), (179, 50, 50)] # Low brightness
}
hsv_pixels = hsv_pixels.reshape(-1, 3)
color_counts = {color: 0 for color in color_ranges}
total_pixels = hsv_pixels.shape[0]
for pixel in hsv_pixels:
h, s, v = pixel
for color, ranges in color_ranges.items():
if isinstance(ranges[0], tuple):
lower = ranges[0]
upper = ranges[1]
if (lower[0] <= h <= upper[0] or lower[0] > upper[0] and (h >= lower[0] or h <= upper[0])) \
and lower[1] <= s <= upper[1] and lower[2] <= v <= upper[2]:
color_counts[color] += 1
break
else:
lower, upper = ranges
if lower[0] <= h <= upper[0] and lower[1] <= s <= upper[1] and lower[2] <= v <= upper[2]:
color_counts[color] += 1
break
color_counts["Red"] += color_counts["Red2"]
del color_counts["Red2"]
if(total_pixels == 0):
total_pixels = 1
color_percentages = {color: (count / total_pixels) * 100 for color, count in color_counts.items()}
return color_percentages
def predict_image(image_path):
img = PILImage.create(image_path)
pred, pred_idx, probs = learn.predict(img)
return pred
def reveal_group():
return gr.update(visible=True)
def hide_group():
return gr.update(visible=False)
def add_wound(image, partOfBody):
wounds.append({"image": image, "description": partOfBody})
return image, partOfBody
def clear_inputs(image, partOfBody):
image=None
partOfBody=""
return image, partOfBody
with gr.Blocks(theme=gr.themes.Glass()) as demo:
gr.Markdown("<center><h1>Welcome to WoundView!</h1></center>")
# Sign-up Group
with gr.Group() as sign_up:
gr.Markdown("<center><h2>New User</h2></center>")
name = gr.Textbox(label="Full Name", placeholder="Enter your name here...")
gender = gr.Radio(["Male", "Female"], label="Gender")
age = gr.Number(label="Age")
conditions = gr.CheckboxGroup(["Diabetes", "Peripheral Arterial Disease", "Venous Insufficiency", "Obesity", "Smoking", ], label="Pre-Existing Medical Conditions")
gr.Markdown("<span style='color: red;'>Some fields were left empty. Please fill them out!</span>", visible=False)
sign_up_btn = gr.Button(value="Sign Up", variant="secondary")
# Home Group
with gr.Group(visible=False) as home:
gr.Markdown("<center><h2>Wounds</h2></center>")
with gr.Row(visible=False) as wound_display:
wound_image = gr.Image()
with gr.Column():
wound_title = gr.Markdown("<center><h2>Wound Description</h2></center>")
with gr.Row():
gr.Markdown("<center>Part of Body:</center>")
wound_desc = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Type of Wound:</center>")
wound_classification = gr.Textbox(container=False)
gr.Markdown("<center><h4>Colors:</h4></center>")
with gr.Row():
gr.Markdown("<center>Red:</center>")
red_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Orange:</center>")
orange_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Yellow:</center>")
yellow_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Magenta:</center>")
magenta_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>White:</center>")
white_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Gray:</center>")
gray_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Black:</center>")
black_percent = gr.Textbox(container=False)
ai_chat_btn = gr.Button(value="AI ChatBot")
add_new_btn = gr.Button(value="Add New")
# Add New Group
with gr.Group(visible=False) as add_new:
gr.Markdown("<center><h2>Add New Wound</h2></center>")
with gr.Row():
with gr.Column():
image = gr.Image(label="Picture of wound", type="filepath")
examples = gr.Examples(examples=["3_photo.jpg", "0_photo.jpg", "12_photo.jpg", "13_photo.jpg", "1_photo.jpg", "4_photo.jpg", "67_photo.jpg", "71_photo.jpg"], inputs=image)
partOfBody = gr.Radio(["Head", "Arm", "Hand", "Back", "Stomach", "Leg", "Foot"], label="What part of the body is the wound on?")
with gr.Row():
confirm_add_new_btn = gr.Button(value="Confirm")
cancel_add_new_btn = gr.Button(value="Cancel")
with gr.Group(visible=False) as ai_chat:
gr.Markdown("<center><h2>AI Chat</h2></center>")
with gr.Column() as gpt:
gr.Markdown("<center><h3>Chat GPT</h3></center>")
chatGPTInput = gr.Textbox(container=False)
chatGPTOutput = gr.Textbox(container=False)
cancel_ai_chat_btn = gr.Button(value="Cancel")
# Button Click Events
sign_up_btn.click(hide_group, outputs=sign_up).then(reveal_group, outputs=home)
add_new_btn.click(hide_group, outputs=home).then(reveal_group, outputs=add_new
).then(clear_inputs,
inputs=[image, partOfBody],
outputs=[image, partOfBody]
)
confirm_add_new_btn.click(add_wound,
inputs=[image, partOfBody],
outputs=[wound_image, wound_desc]
).then(reveal_group, outputs=home
).then(hide_group, outputs=add_new
).then(reveal_group, outputs=wound_display
).then(predict_image,
inputs=image,
outputs=wound_classification
).then(one_step_inference,
inputs=image,
outputs=[red_percent, orange_percent, yellow_percent, magenta_percent, white_percent, gray_percent, black_percent]
)
cancel_add_new_btn.click(hide_group, outputs=add_new).then(reveal_group, outputs=home)
ai_chat_btn.click(hide_group, outputs=home).then(reveal_group, outputs=ai_chat
).then(get_response_with_context,
inputs=[name, gender, age, conditions, partOfBody, wound_classification, red_percent, orange_percent, yellow_percent, magenta_percent, white_percent, gray_percent, black_percent],
outputs=[chatGPTInput, chatGPTOutput]
)
cancel_ai_chat_btn.click(hide_group, outputs=ai_chat).then(reveal_group, outputs=home)
demo.launch(share=True) |