Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from threading import Thread | |
import gradio as gr | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor,TextIteratorStreamer,AutoTokenizer | |
from qwen_vl_utils import process_vision_info | |
import trimesh | |
from trimesh.exchange.gltf import export_glb | |
import numpy as np | |
import tempfile | |
def predict(_chatbot, task_history): | |
chat_query = _chatbot[-1][0] | |
query = task_history[-1][0] | |
if len(chat_query) == 0: | |
_chatbot.pop() | |
task_history.pop() | |
return _chatbot | |
print("User: " + _parse_text(query)) | |
history_cp = copy.deepcopy(task_history) | |
full_response = "" | |
messages = [] | |
content = [] | |
for q, a in history_cp: | |
if isinstance(q, (tuple, list)): | |
if is_video_file(q[0]): | |
content.append({'video': f'file://{q[0]}'}) | |
else: | |
content.append({'image': f'file://{q[0]}'}) | |
else: | |
content.append({'text': q}) | |
messages.append({'role': 'user', 'content': content}) | |
messages.append({'role': 'assistant', 'content': [{'text': a}]}) | |
content = [] | |
messages.pop() | |
messages = _transform_messages(messages) | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, | |
videos=video_inputs, padding=True, return_tensors='pt') | |
inputs = inputs.to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs} | |
thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
thread.start() | |
#for new_text in streamer: | |
# yield new_text | |
buffer = [] | |
for chunk in streamer: | |
buffer.append(chunk) | |
yield "".join(buffer) | |
def regenerate(_chatbot, task_history): | |
if not task_history: | |
return _chatbot | |
item = task_history[-1] | |
if item[1] is None: | |
return _chatbot | |
task_history[-1] = (item[0], None) | |
chatbot_item = _chatbot.pop(-1) | |
if chatbot_item[0] is None: | |
_chatbot[-1] = (_chatbot[-1][0], None) | |
else: | |
_chatbot.append((chatbot_item[0], None)) | |
_chatbot_gen = predict(_chatbot, task_history) | |
for _chatbot in _chatbot_gen: | |
yield _chatbot | |
def add_text(history, task_history, text): | |
task_text = text | |
history = history if history is not None else [] | |
task_history = task_history if task_history is not None else [] | |
history = history + [(_parse_text(text), None)] | |
task_history = task_history + [(task_text, None)] | |
return history, task_history, "" | |
def add_file(history, task_history, file): | |
history = history if history is not None else [] | |
task_history = task_history if task_history is not None else [] | |
history = history + [((file.name,), None)] | |
task_history = task_history + [((file.name,), None)] | |
return history, task_history | |
def reset_user_input(): | |
return gr.update(value="") | |
def reset_state(task_history): | |
task_history.clear() | |
return [] | |
def _transform_messages(original_messages): | |
transformed_messages = [] | |
for message in original_messages: | |
new_content = [] | |
for item in message['content']: | |
if 'image' in item: | |
new_item = {'type': 'image', 'image': item['image']} | |
elif 'text' in item: | |
new_item = {'type': 'text', 'text': item['text']} | |
elif 'video' in item: | |
new_item = {'type': 'video', 'video': item['video']} | |
else: | |
continue | |
new_content.append(new_item) | |
new_message = {'role': message['role'], 'content': new_content} | |
transformed_messages.append(new_message) | |
return transformed_messages | |
# --------- Configuration & Model Loading --------- | |
MODEL_DIR = "Qwen/Qwen2.5-VL-3B-Instruct" | |
# Load processor, tokenizer, model for Qwen2.5-VL | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_DIR, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
processor = AutoProcessor.from_pretrained(MODEL_DIR) | |
tokenizer = processor.tokenizer | |
#terminators = [tokenizer.eos_token_id] | |
def chat_qwen_vl(messages: str, history: list, temperature: float = 0.1, max_new_tokens: int = 1024): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": messages}, | |
], | |
} | |
] | |
messages = _transform_messages(messages) | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, | |
videos=video_inputs, padding=True, return_tensors='pt') | |
inputs = inputs.to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs} | |
thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
thread.start() | |
#for new_text in streamer: | |
# yield new_text | |
buffer = [] | |
for chunk in streamer: | |
buffer.append(chunk) | |
yield "".join(buffer) | |
css = """ | |
h1 { text-align: center; } | |
""" | |
PLACEHOLDER = ( | |
"<div style='padding:30px;text-align:center;display:flex;flex-direction:column;align-items:center;'>" | |
"<h1 style='font-size:28px;opacity:0.55;'>Qwen2.5-VL Local Chat</h1>" | |
"<p style='font-size:18px;opacity:0.65;'>Ask anything or generate images!</p></div>" | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("""<center><font size=3> ShapeLLM-7B Demo </center>""") | |
chatbot = gr.Chatbot(label='ShapeLLM-4o', elem_classes="control-height", height=500) | |
query = gr.Textbox(lines=2, label='Input') | |
task_history = gr.State([]) | |
with gr.Row(): | |
addfile_btn = gr.UploadButton("π Upload (δΈδΌ ζδ»Ά)", file_types=["image", "video"]) | |
submit_btn = gr.Button("π Submit (ει)") | |
regen_btn = gr.Button("π€οΈ Regenerate (ιθ―)") | |
empty_bin = gr.Button("π§Ή Clear History (ζΈ ι€εε²)") | |
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then( | |
predict, [chatbot, task_history], [chatbot], show_progress=True | |
) | |
submit_btn.click(reset_user_input, [], [query]) | |
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True) | |
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True) | |
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True) | |
if __name__ == "__main__": | |
demo.launch() |