File size: 9,347 Bytes
cc6558b
d45d6cb
cc6558b
 
 
 
d45d6cb
cc6558b
 
 
d45d6cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6558b
 
 
d45d6cb
 
 
 
 
cc6558b
d45d6cb
 
 
 
 
 
cc6558b
 
d45d6cb
 
 
 
cc6558b
d45d6cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6558b
 
d45d6cb
 
 
 
 
 
 
cc6558b
d45d6cb
cc6558b
d45d6cb
 
cc6558b
d45d6cb
 
cc6558b
 
 
d45d6cb
cc6558b
 
 
 
d45d6cb
cc6558b
 
d45d6cb
 
 
 
 
 
 
 
 
 
 
cc6558b
badf861
 
 
 
 
 
 
d45d6cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c20325
 
 
 
 
 
 
cc6558b
 
d45d6cb
fdf7ba1
d45d6cb
cc6558b
 
badf861
 
 
 
 
 
d45d6cb
badf861
d45d6cb
 
 
 
badf861
cc6558b
bccebb5
badf861
 
 
 
 
 
 
 
 
 
 
 
d45d6cb
cc6558b
 
d45d6cb
 
cc6558b
 
 
 
 
 
d45d6cb
cc6558b
d45d6cb
 
cc6558b
 
 
 
d45d6cb
 
5fe972f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import spaces
import os
import time
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, list_repo_files
from src_inference.pipeline import FluxPipeline
from src_inference.lora_helper import set_single_lora

BASE_PATH = "black-forest-labs/FLUX.1-dev"
LOCAL_LORA_DIR = "./LoRAs"          
CUSTOM_LORA_DIR = "./Custom_LoRAs"  
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)

print("downloading OmniConsistency base LoRA …")
omni_consistency_path = hf_hub_download(
    repo_id="showlab/OmniConsistency",
    filename="OmniConsistency.safetensors",
    local_dir="./Model"
)

print("loading base pipeline …")
pipe = FluxPipeline.from_pretrained(
    BASE_PATH, torch_dtype=torch.bfloat16
).to("cuda")
set_single_lora(pipe.transformer, omni_consistency_path,
                lora_weights=[1], cond_size=512)

def download_all_loras():
    lora_names = [
        "3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
        "Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
        "Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
        "Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
        "Snoopy", "Van_Gogh", "Vector"
    ]
    for name in lora_names:
        hf_hub_download(
            repo_id="showlab/OmniConsistency",
            filename=f"LoRAs/{name}_rank128_bf16.safetensors",
            local_dir=LOCAL_LORA_DIR,
        )
download_all_loras()

def clear_cache(transformer):
    for _, attn_processor in transformer.attn_processors.items():
        attn_processor.bank_kv.clear()

@spaces.GPU()
def generate_image(
    lora_name,        
    custom_repo_id,   
    prompt,
    uploaded_image,
    width, height,
    guidance_scale,
    num_inference_steps,
    seed
):
    width, height = int(width), int(height)
    generator = torch.Generator("cpu").manual_seed(seed)

    if custom_repo_id and custom_repo_id.strip():
        repo_id = custom_repo_id.strip()
        try:
            files = list_repo_files(repo_id)
            print("using custom LoRA from:", repo_id)
            safetensors_files = [f for f in files if f.endswith(".safetensors")]
            print("found safetensors files:", safetensors_files)
            if not safetensors_files:
                raise ValueError("No .safetensors files were found in this repo")
            fname = safetensors_files[0]
            lora_path = hf_hub_download(
                repo_id=repo_id,
                filename=fname,
                local_dir=CUSTOM_LORA_DIR,
            )
        except Exception as e:
            raise gr.Error(f"Load custom LoRA failed: {e}")
    else:
        lora_path = os.path.join(
            f"{LOCAL_LORA_DIR}/LoRAs", f"{lora_name}_rank128_bf16.safetensors"
        )

    pipe.unload_lora_weights()
    try:
        pipe.load_lora_weights(
            os.path.dirname(lora_path),
            weight_name=os.path.basename(lora_path)
        )
    except Exception as e:
        raise gr.Error(f"Load LoRA failed: {e}")

    spatial_image  = [uploaded_image.convert("RGB")]
    subject_images = []
    start = time.time()
    out_img = pipe(
        prompt,
        height=(height // 8) * 8,
        width=(width  // 8) * 8,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        max_sequence_length=512,
        generator=generator,
        spatial_images=spatial_image,
        subject_images=subject_images,
        cond_size=512,
    ).images[0]
    print(f"inference time: {time.time()-start:.2f}s")

    clear_cache(pipe.transformer)
    return uploaded_image, out_img

# =============== Gradio UI ===============
def create_interface():
    demo_lora_names = [
        "3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
        "Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
        "Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
        "Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
        "Snoopy", "Van_Gogh", "Vector"
    ]

    def update_trigger_word(lora_name, prompt):
      for name in demo_lora_names:
        trigger = " ".join(name.split("_")) + " style,"
        prompt = prompt.replace(trigger, "")
      new_trigger = " ".join(lora_name.split("_"))+ " style,"
      return new_trigger + prompt

    # Example data
    examples = [
        ["3D_Chibi", "", "3D Chibi style, Two smiling colleagues enthusiastically high-five in front of a whiteboard filled with technical notes about multimodal learning, reflecting a moment of success and collaboration at OpenAI.", 
        Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
        ["Clay_Toy", "", "Clay Toy style, Three team members from OpenAI are gathered around a laptop in a cozy, festive setting, with holiday decorations in the background; one waves cheerfully while the others engage in light conversation, reflecting a relaxed and collaborative atmosphere.", 
        Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
        ["American_Cartoon", "", "American Cartoon style, In a dramatic and comedic moment from a classic Chinese film, an intense elder with a white beard and red hat grips a younger man, declaring something with fervor, while the subtitle at the bottom reads 'I want them all' — capturing both tension and humor.",  
        Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
        ["Origami", "", "Origami style, A thrilled fan wearing a Portugal football kit poses energetically with a smiling Cristiano Ronaldo, who gives a thumbs-up, as they stand side by side in a casual, cheerful moment—capturing the excitement of meeting a football legend.", 
        Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
        ["Vector", "", "Vector style, A man glances admiringly at a passing woman, while his girlfriend looks at him in disbelief, perfectly capturing the theme of shifting attention and misplaced priorities in a humorous, relatable way.", 
        Image.open("./test_imgs/04.png"), 512, 1024, 3.5, 24, 42]
    ]

    header = """
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2505.18445"><img src="https://img.shields.io/badge/ariXv-2505.18445-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/showlab/OmniConsistency"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""

    with gr.Blocks() as demo:
        gr.Markdown("# OmniConsistency LoRA Image Generation")
        gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
        gr.HTML(header)

        with gr.Row():
            with gr.Column(scale=1):
               image_input = gr.Image(type="pil", label="Upload Image")
               prompt_box = gr.Textbox(label="Prompt",
                                        value="3D Chibi style,",
                                        info="Remember to include the necessary trigger words if you're using a custom LoRA."
                )
               lora_dropdown = gr.Dropdown(
                    demo_lora_names, label="Select built-in LoRA")
               custom_repo_box = gr.Textbox(
                    label="Enter Custom LoRA",
                    placeholder="LoRA Hugging Face path (e.g., 'username/repo_name')",
                    info="If you want to use a custom LoRA, enter its Hugging Face repo ID here and built-in LoRA will be Overridden. Leave empty to use built-in LoRAs. [Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)"
                )
               gen_btn = gr.Button("Generate")
            with gr.Column(scale=1):
                output_image = gr.ImageSlider(label="Generated Image")
        with gr.Accordion("Advanced Options", open=False):
          height_box = gr.Textbox(value="1024", label="Height")
          width_box  = gr.Textbox(value="1024", label="Width")
          guidance_slider = gr.Slider(
              0.1, 20, value=3.5, step=0.1, label="Guidance Scale")
          steps_slider = gr.Slider(
              1, 50, value=25, step=1, label="Inference Steps")
          seed_slider = gr.Slider(
              1, 2_147_483_647, value=42, step=1, label="Seed")

        lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown,prompt_box], 
                             outputs=prompt_box)

        gr.Examples(
            examples=examples,
            inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
                    height_box, width_box, guidance_slider, steps_slider, seed_slider],
            outputs=output_image,
            fn=generate_image,
            cache_examples=False,
            label="Examples"
        )

        gen_btn.click(
            fn=generate_image,
            inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
                    width_box, height_box, guidance_slider, steps_slider, seed_slider],
            outputs=output_image
        )
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(ssr_mode=False)