Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,347 Bytes
cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b badf861 d45d6cb 7c20325 cc6558b d45d6cb fdf7ba1 d45d6cb cc6558b badf861 d45d6cb badf861 d45d6cb badf861 cc6558b bccebb5 badf861 d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb cc6558b d45d6cb 5fe972f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import spaces
import os
import time
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, list_repo_files
from src_inference.pipeline import FluxPipeline
from src_inference.lora_helper import set_single_lora
BASE_PATH = "black-forest-labs/FLUX.1-dev"
LOCAL_LORA_DIR = "./LoRAs"
CUSTOM_LORA_DIR = "./Custom_LoRAs"
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)
print("downloading OmniConsistency base LoRA …")
omni_consistency_path = hf_hub_download(
repo_id="showlab/OmniConsistency",
filename="OmniConsistency.safetensors",
local_dir="./Model"
)
print("loading base pipeline …")
pipe = FluxPipeline.from_pretrained(
BASE_PATH, torch_dtype=torch.bfloat16
).to("cuda")
set_single_lora(pipe.transformer, omni_consistency_path,
lora_weights=[1], cond_size=512)
def download_all_loras():
lora_names = [
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
"Snoopy", "Van_Gogh", "Vector"
]
for name in lora_names:
hf_hub_download(
repo_id="showlab/OmniConsistency",
filename=f"LoRAs/{name}_rank128_bf16.safetensors",
local_dir=LOCAL_LORA_DIR,
)
download_all_loras()
def clear_cache(transformer):
for _, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
@spaces.GPU()
def generate_image(
lora_name,
custom_repo_id,
prompt,
uploaded_image,
width, height,
guidance_scale,
num_inference_steps,
seed
):
width, height = int(width), int(height)
generator = torch.Generator("cpu").manual_seed(seed)
if custom_repo_id and custom_repo_id.strip():
repo_id = custom_repo_id.strip()
try:
files = list_repo_files(repo_id)
print("using custom LoRA from:", repo_id)
safetensors_files = [f for f in files if f.endswith(".safetensors")]
print("found safetensors files:", safetensors_files)
if not safetensors_files:
raise ValueError("No .safetensors files were found in this repo")
fname = safetensors_files[0]
lora_path = hf_hub_download(
repo_id=repo_id,
filename=fname,
local_dir=CUSTOM_LORA_DIR,
)
except Exception as e:
raise gr.Error(f"Load custom LoRA failed: {e}")
else:
lora_path = os.path.join(
f"{LOCAL_LORA_DIR}/LoRAs", f"{lora_name}_rank128_bf16.safetensors"
)
pipe.unload_lora_weights()
try:
pipe.load_lora_weights(
os.path.dirname(lora_path),
weight_name=os.path.basename(lora_path)
)
except Exception as e:
raise gr.Error(f"Load LoRA failed: {e}")
spatial_image = [uploaded_image.convert("RGB")]
subject_images = []
start = time.time()
out_img = pipe(
prompt,
height=(height // 8) * 8,
width=(width // 8) * 8,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=generator,
spatial_images=spatial_image,
subject_images=subject_images,
cond_size=512,
).images[0]
print(f"inference time: {time.time()-start:.2f}s")
clear_cache(pipe.transformer)
return uploaded_image, out_img
# =============== Gradio UI ===============
def create_interface():
demo_lora_names = [
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
"Snoopy", "Van_Gogh", "Vector"
]
def update_trigger_word(lora_name, prompt):
for name in demo_lora_names:
trigger = " ".join(name.split("_")) + " style,"
prompt = prompt.replace(trigger, "")
new_trigger = " ".join(lora_name.split("_"))+ " style,"
return new_trigger + prompt
# Example data
examples = [
["3D_Chibi", "", "3D Chibi style, Two smiling colleagues enthusiastically high-five in front of a whiteboard filled with technical notes about multimodal learning, reflecting a moment of success and collaboration at OpenAI.",
Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
["Clay_Toy", "", "Clay Toy style, Three team members from OpenAI are gathered around a laptop in a cozy, festive setting, with holiday decorations in the background; one waves cheerfully while the others engage in light conversation, reflecting a relaxed and collaborative atmosphere.",
Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
["American_Cartoon", "", "American Cartoon style, In a dramatic and comedic moment from a classic Chinese film, an intense elder with a white beard and red hat grips a younger man, declaring something with fervor, while the subtitle at the bottom reads 'I want them all' — capturing both tension and humor.",
Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
["Origami", "", "Origami style, A thrilled fan wearing a Portugal football kit poses energetically with a smiling Cristiano Ronaldo, who gives a thumbs-up, as they stand side by side in a casual, cheerful moment—capturing the excitement of meeting a football legend.",
Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
["Vector", "", "Vector style, A man glances admiringly at a passing woman, while his girlfriend looks at him in disbelief, perfectly capturing the theme of shifting attention and misplaced priorities in a humorous, relatable way.",
Image.open("./test_imgs/04.png"), 512, 1024, 3.5, 24, 42]
]
header = """
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2505.18445"><img src="https://img.shields.io/badge/ariXv-2505.18445-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/showlab/OmniConsistency"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown("# OmniConsistency LoRA Image Generation")
gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
gr.HTML(header)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Image")
prompt_box = gr.Textbox(label="Prompt",
value="3D Chibi style,",
info="Remember to include the necessary trigger words if you're using a custom LoRA."
)
lora_dropdown = gr.Dropdown(
demo_lora_names, label="Select built-in LoRA")
custom_repo_box = gr.Textbox(
label="Enter Custom LoRA",
placeholder="LoRA Hugging Face path (e.g., 'username/repo_name')",
info="If you want to use a custom LoRA, enter its Hugging Face repo ID here and built-in LoRA will be Overridden. Leave empty to use built-in LoRAs. [Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)"
)
gen_btn = gr.Button("Generate")
with gr.Column(scale=1):
output_image = gr.ImageSlider(label="Generated Image")
with gr.Accordion("Advanced Options", open=False):
height_box = gr.Textbox(value="1024", label="Height")
width_box = gr.Textbox(value="1024", label="Width")
guidance_slider = gr.Slider(
0.1, 20, value=3.5, step=0.1, label="Guidance Scale")
steps_slider = gr.Slider(
1, 50, value=25, step=1, label="Inference Steps")
seed_slider = gr.Slider(
1, 2_147_483_647, value=42, step=1, label="Seed")
lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown,prompt_box],
outputs=prompt_box)
gr.Examples(
examples=examples,
inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
height_box, width_box, guidance_slider, steps_slider, seed_slider],
outputs=output_image,
fn=generate_image,
cache_examples=False,
label="Examples"
)
gen_btn.click(
fn=generate_image,
inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
width_box, height_box, guidance_slider, steps_slider, seed_slider],
outputs=output_image
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(ssr_mode=False)
|