Spaces:
Sleeping
Sleeping
File size: 917 Bytes
61bc9be bce21ce 61bc9be bce21ce 61bc9be bce21ce 61bc9be bce21ce 61bc9be bce21ce 61bc9be d871817 61bc9be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
import base64
import io
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
model = AutoModel.from_pretrained("facebook/dinov2-base")
def get_embedding(base64_str):
header, encoded = base64_str.split(",", 1)
image_data = base64.b64decode(encoded)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state[:, 0]
return embeddings.squeeze().tolist()
iface = gr.Interface(
fn=get_embedding,
inputs="text", # ahora recibimos un string base64
outputs="json",
description="Microservicio para extraer embeddings desde base64."
)
iface.queue() # 👈 Esta línea activa el sistema de event_id y polling
iface.launch()
|