Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,23 @@ from PIL import Image
|
|
5 |
import base64
|
6 |
import io
|
7 |
|
|
|
8 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
9 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
10 |
|
|
|
11 |
def get_embedding(base64_str):
|
|
|
12 |
header, encoded = base64_str.split(",", 1)
|
13 |
-
|
14 |
-
|
|
|
15 |
|
|
|
16 |
inputs = processor(images=image, return_tensors="pt")
|
17 |
with torch.no_grad():
|
18 |
embeddings = model(**inputs).last_hidden_state[:, 0]
|
19 |
return embeddings.squeeze().tolist()
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
inputs="text", # ahora recibimos un string base64
|
24 |
-
outputs="json",
|
25 |
-
description="Microservicio para extraer embeddings desde base64."
|
26 |
-
)
|
27 |
-
|
28 |
-
iface.queue() # 👈 Esta línea activa el sistema de event_id y polling
|
29 |
-
iface.launch()
|
|
|
5 |
import base64
|
6 |
import io
|
7 |
|
8 |
+
# Modelo
|
9 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
10 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
11 |
|
12 |
+
# Recibe string base64
|
13 |
def get_embedding(base64_str):
|
14 |
+
# Separar encabezado
|
15 |
header, encoded = base64_str.split(",", 1)
|
16 |
+
# Decodificar
|
17 |
+
image_bytes = base64.b64decode(encoded)
|
18 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
19 |
|
20 |
+
# Procesar
|
21 |
inputs = processor(images=image, return_tensors="pt")
|
22 |
with torch.no_grad():
|
23 |
embeddings = model(**inputs).last_hidden_state[:, 0]
|
24 |
return embeddings.squeeze().tolist()
|
25 |
|
26 |
+
# Gradio Interface
|
27 |
+
gr.Interface(fn=get_embedding, inputs="text", outputs="json").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|